LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Statistical Study Characterizes Patterns of Cancer Chromosome Aneuploidy

By LabMedica International staff writers
Posted on 07 Feb 2012
A large statistical study of cancer genome karyotypes has revealed a pattern linking gain or loss of chromosomes (aneuploidy) in more than 60 different classes of the disease.

Chromosomal aneuploidy is the most common abnormality in cancer. While certain aberrations, most commonly translocations, are known to be strongly associated with specific cancers and contribute to their formation, most aberrations appear to be nonspecific and arbitrary, and do not have a clear effect. The understanding of chromosomal aneuploidy and its role in tumorigenesis is a fundamental open problem in cancer biology.

Loss or gain of chromosomes is usual detrimental or fatal to an organism. Yet, most cancers thrive with bizarre alterations of chromosome number. To understand this phenomenon better, investigators at Tel Aviv University (Israel) systematically studied the characteristics of chromosomal aberrations in over 15,000 cancer karyotypes over 62 cancer classes.

Results published in the June 29, 2011, online edition of the journal Genome Biology revealed a very high co-occurrence rate of chromosome gains with other chromosome gains, and of losses with losses. Gains and losses rarely showed significant co-occurrence. This finding was consistent across cancer classes and was confirmed on an independent comparative genomic hybridization dataset of cancer samples.

“In cancer, there are many cases of extra or missing chromosomes. Yet cancer cells thrive more effectively than other cells,” said senior author Dr. Ron Shamir, professor of computer science at the University of Tel Aviv. “Hopefully future investigation into these chromosomal aberrations will give researchers more clues into why something that is so detrimental to our healthy development is so beneficial to this disease. Cancer is the result of sequences of events, each causing the genome to become more mutated, mixed, and duplicated. Tracking these changes could aid our understanding of the driving forces of cancer's progress.”

Related Links:
Tel Aviv University




New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more