LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Differential Gene Expression Found in Normal and Hypertensive Kidneys

By LabMedica International staff writers
Posted on 22 Nov 2011
In a comparison of gene expression in kidney tissues isolated from patients with hypertension and controls with normal blood pressure researchers found 14 genes and 11 miRNAs (microRNAs) that were differentially expressed in the medulla.

Investigators at the University of Leicester (United Kingdom) and colleagues from Poland and Australia analyzed tissue samples selected from 15 patients known to have high blood pressure, along with seven patients with normal blood pressure who were used as the control group for the study. The samples of human kidneys were stored in the Silesian Renal Tissue Bank (SRTB), and came from Polish males, individuals of white European ancestry.

Results of microarray analysis published in the October 31, 2011, online edition of the journal Hypertension revealed 14 genes and 11 miRNAs that were differentially expressed in the kidney medulla. Two of the miRNAs, which had lower levels of expression in the tissues from the hypertension patients, were linked to renin expression. Inhibition of miRNAs that reduce renin synthesis causes increased expression of renin activity. An overactive renin-angiotension system leads to vasoconstriction and retention of sodium and water. These effects lead to hypertension.

“I am very excited about this publication,” said contributing author Dr. Maciej Tomaszewski, senior clinical lecturer in cardiovascular medicine at the University of Leicester. “Renin is one of the most important contributors to blood pressure regulation. The novel insights into its expression within the human kidney from this study open up new avenues for the development of new antihypertensive medications. The collection of hypertensive and normotensive kidneys is available for our studies in Leicester thanks to a long-term international collaboration. We will continue using this unique research resource in our further studies to decipher the genetic background of human hypertension.”

Related Links:
University of Leicester



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more