Mechanism Found to Temporarily Reverse Aging in the Immune System
|
By LabMedica International staff writers Posted on 30 Aug 2011 |
Scientists have discovered a new mechanism that controls aging in white blood cells. The research has created an avenue to temporarily reverse the effects of aging on immunity and could, in the future, allow for the short-term boost of the immune systems of older individuals.
The study’s findings were published in the September 2011 issue of the Journal of Immunology. Weakened immunity is a serious issue for older people. Because immune systems become less effective as one ages, people suffer from more infections and these are often more severe, taking a serious toll on health and quality of life.
Prof. Arne Akbar, from University College London (UCL; UK), who led this research, explained, “Our immune systems get progressively weaker as we age because each time we recover from an infection a proportion of our white blood cells become deactivated. This is an important process that has probably evolved to prevent certain cancers, but as the proportion of inactive cells builds up over time, our defenses become weakened. What this research shows is that some of these cells are being actively switched off in our bodies by a mechanism, which hadn’t been identified before as important in aging in the immune system. Whilst we wouldn’t want to reactivate these cells permanently, we have an idea now of how to wake them from their slumber temporarily, just to give the immune system a little boost.”
Until now, aging in immune cells was thought to be largely determined by the length of specific caps on the ends of DNA. These caps, called telomeres, get shorter each time a white blood cell multiplies until, when they get too short, the cell is permanently deactivated. This means that our immune cells have a built-in lifespan of effectiveness and, as we live longer, this no longer long enough to provide us protection into old age.
However, when Prof. Akbar’s team took some blood samples and looked closely at the white blood cells they saw that some were inactive and yet had long telomeres. This told the researchers that there must be another mechanism in the immune system causing cells to become deactivated that was independent of telomere length. Prof. Akbar noted, “Finding that these inactive cells had long telomeres was really exciting as it meant that they might not be permanently deactivated. It was like a football manager finding out that some star players who everyone thought had retired for good could be coaxed back to play in one last important game.”
When the researchers blocked this newly identified pathway in the laboratory, they discovered that the white blood cells appeared to be reactivated. Pharmaceutical agents that block this pathway are already being developed and tested for use in other treatments so the next phase in this research is to explore further whether white blood cells could be reactivated in older individuals, and what benefits this could bring.
Prof. Akbar continued, “This research opens up the exciting possibility of giving older people’s immune systems a temporary boost to help them fight off infections, but this is not a fountain of eternal youth. It is perfectly normal for our immune systems to become less effective and there are good evolutionary reasons for this. We’re a long way from having enough understanding of ageing to consider permanently rejuvenating white blood cells, if it is even possible.”
Prof. Douglas Kell, chief executive of the Biotechnology and Biological Sciences Research Council (BBSR; Swindon, Wiltshire, UK), the organization that funded the research, said, “This is a fantastic example of the value of deepening our understanding of fundamental cell biology. This work has discovered a new and unforeseen process controlling how our immune systems change, as we get older. Also, by exploring in detail how our cells work, it has opened up the prospect of helping older people’s immune systems using medicines that are already being tested and developed. By increasing the incidence and severity of infection, weakened immunity seriously damages the health and quality of life of older people so this research is very valuable.”
Related Links:
University College London
Biotechnology and Biological Sciences Research Council
The study’s findings were published in the September 2011 issue of the Journal of Immunology. Weakened immunity is a serious issue for older people. Because immune systems become less effective as one ages, people suffer from more infections and these are often more severe, taking a serious toll on health and quality of life.
Prof. Arne Akbar, from University College London (UCL; UK), who led this research, explained, “Our immune systems get progressively weaker as we age because each time we recover from an infection a proportion of our white blood cells become deactivated. This is an important process that has probably evolved to prevent certain cancers, but as the proportion of inactive cells builds up over time, our defenses become weakened. What this research shows is that some of these cells are being actively switched off in our bodies by a mechanism, which hadn’t been identified before as important in aging in the immune system. Whilst we wouldn’t want to reactivate these cells permanently, we have an idea now of how to wake them from their slumber temporarily, just to give the immune system a little boost.”
Until now, aging in immune cells was thought to be largely determined by the length of specific caps on the ends of DNA. These caps, called telomeres, get shorter each time a white blood cell multiplies until, when they get too short, the cell is permanently deactivated. This means that our immune cells have a built-in lifespan of effectiveness and, as we live longer, this no longer long enough to provide us protection into old age.
However, when Prof. Akbar’s team took some blood samples and looked closely at the white blood cells they saw that some were inactive and yet had long telomeres. This told the researchers that there must be another mechanism in the immune system causing cells to become deactivated that was independent of telomere length. Prof. Akbar noted, “Finding that these inactive cells had long telomeres was really exciting as it meant that they might not be permanently deactivated. It was like a football manager finding out that some star players who everyone thought had retired for good could be coaxed back to play in one last important game.”
When the researchers blocked this newly identified pathway in the laboratory, they discovered that the white blood cells appeared to be reactivated. Pharmaceutical agents that block this pathway are already being developed and tested for use in other treatments so the next phase in this research is to explore further whether white blood cells could be reactivated in older individuals, and what benefits this could bring.
Prof. Akbar continued, “This research opens up the exciting possibility of giving older people’s immune systems a temporary boost to help them fight off infections, but this is not a fountain of eternal youth. It is perfectly normal for our immune systems to become less effective and there are good evolutionary reasons for this. We’re a long way from having enough understanding of ageing to consider permanently rejuvenating white blood cells, if it is even possible.”
Prof. Douglas Kell, chief executive of the Biotechnology and Biological Sciences Research Council (BBSR; Swindon, Wiltshire, UK), the organization that funded the research, said, “This is a fantastic example of the value of deepening our understanding of fundamental cell biology. This work has discovered a new and unforeseen process controlling how our immune systems change, as we get older. Also, by exploring in detail how our cells work, it has opened up the prospect of helping older people’s immune systems using medicines that are already being tested and developed. By increasing the incidence and severity of infection, weakened immunity seriously damages the health and quality of life of older people so this research is very valuable.”
Related Links:
University College London
Biotechnology and Biological Sciences Research Council
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more






 Analyzer.jpg)
