Biocomputing Advance Presages Logic Control over Biochemical Processes
|
By LabMedica International staff writers Posted on 16 Jun 2011 |
Researchers from the California Institute of Technology (Caltech; Pasadena, CA, USA) have built the most complex biochemical circuit ever created.
Building these circuits allows researchers from Caltech to study the principles of computing with biologic systems, and to design biochemical pathways with decision-making capabilities. Such circuits would give biochemists unprecedented control in designing chemical reactions for applications in biological and chemical engineering. For example, a synthetic biochemical circuit could be introduced into a clinical blood sample to detect the levels of a variety of molecules in the sample, and integrate that information into a diagnosis of any possible pathology.
"We're trying to borrow the ideas that have had huge success in the electronic world, such as abstract representations of computing operations, programming languages, and compilers, and apply them to the biomolecular world," said Dr. Lulu Qian, a senior postdoctoral scholar in bioengineering at Caltech and lead author on a paper published in the June 3, 2011, issue of the journal Science.
Along with Dr. Erik Winfree, Caltech professor of computer science, computation, and neural systems, and bioengineering, Dr. Qian utilized a new type of DNA-based component to build the largest artificial biochemical circuit ever made. Earlier lab-made biochemical circuits were limited because they worked less reliably and predictably when scaled to larger sizes, Dr. Qian explained. The most probable reason behind this limitation is that such circuits require various molecular structures to implement different functions, making large systems more complicated and difficult to debug. The researchers' new application, however, involves components that are simple, standardized, effective, and scalable.
"You can imagine that in the computer industry, you want to make better and better computers," Dr. Qian said. "This is our effort to do the same. We want to make better and better biochemical circuits that can do more sophisticated tasks, driving molecular devices to act on their environment."
To construct their circuits, the researchers used pieces of DNA to make logic gates--devices that produce on-off output signals in response to on-off input signals. Biochemical circuits comprise molecules floating in salt water. DNA-based logic gates receive and produce molecules as signals. The molecular signals travel from one specific gate to another, connecting the circuit as if they were wires.
Dr. Winfree and his colleagues first built such a biochemical circuit in 2006. In this work, DNA signal molecules connected several DNA logic gates to each other, forming a multilayered circuit. However, this earlier circuit consisted of only 12 different DNA molecules, and the circuit slowed down by a few orders of magnitude when expanded from a single logic gate to a five-layered circuit. In their new design, the researchers have engineered logic gates that are simpler and more reliable, allowing them to make circuits at least five times larger.
The new logic gates are made from pieces of either short, single-stranded DNA or partially double-stranded DNA in which single strands stick out like tails from the DNA's double helix. The single-stranded DNA molecules act as input and output signals that interact with the partially double-stranded ones.
"The molecules are just floating around in solution, bumping into each other from time to time," Dr. Winfree explained. "Occasionally, an incoming strand with the right DNA sequence will zip itself up to one strand while simultaneously unzipping another, releasing it into solution and allowing it to react with yet another strand." Because the researchers can encode whatever DNA sequence they want, they have full control over this process. "You have this programmable interaction," he commented.
Drs. Qian and Winfree made several circuits with their approach, but the largest--containing 74 different DNA molecules--can compute the square root of any number up to 15 (essentially, a four-bit binary number) and round down the answer to the nearest integer. The researchers then monitor the concentrations of output molecules during the calculations to determine the answer. The calculation takes about 10 hours, so it will not replace a PC anytime soon. However, the purpose of these circuits is not to compete with electronics, but to give scientists logic control over biochemical processes.
All the logic gates have identical structures with different sequences. As a result, they can be standardized, so that the same types of components can be wired together to make different circuits. Moreover, according to Dr. Qian, the user does not have to know anything about the molecular machinery behind the circuit to make one. If you want a circuit that could automatically diagnoses a disease, one just submits an abstract representation of the logic functions in your design to a compiler that the researchers provide online, which will then translate the design into the DNA components needed to build the circuit.
The circuit components are also tunable. By adjusting the concentrations of the types of DNA, the researchers can alter the functions of the logic gates. The circuits are versatile, featuring plug-and-play components that can be easily reconfigured to rewire the circuit. The simplicity of the logic gates also allows for efficient techniques that synthesize them in parallel.
"Like Moore's Law for silicon electronics, which says that computers are growing exponentially smaller and more powerful every year, molecular systems developed with DNA nanotechnology have been doubling in size roughly every three years," Dr. Winfree says.
Dr. Qian added, "The dream is that synthetic biochemical circuits will one day achieve complexities comparable to life itself."
Related Links:
California Institute of Technology
Building these circuits allows researchers from Caltech to study the principles of computing with biologic systems, and to design biochemical pathways with decision-making capabilities. Such circuits would give biochemists unprecedented control in designing chemical reactions for applications in biological and chemical engineering. For example, a synthetic biochemical circuit could be introduced into a clinical blood sample to detect the levels of a variety of molecules in the sample, and integrate that information into a diagnosis of any possible pathology.
"We're trying to borrow the ideas that have had huge success in the electronic world, such as abstract representations of computing operations, programming languages, and compilers, and apply them to the biomolecular world," said Dr. Lulu Qian, a senior postdoctoral scholar in bioengineering at Caltech and lead author on a paper published in the June 3, 2011, issue of the journal Science.
Along with Dr. Erik Winfree, Caltech professor of computer science, computation, and neural systems, and bioengineering, Dr. Qian utilized a new type of DNA-based component to build the largest artificial biochemical circuit ever made. Earlier lab-made biochemical circuits were limited because they worked less reliably and predictably when scaled to larger sizes, Dr. Qian explained. The most probable reason behind this limitation is that such circuits require various molecular structures to implement different functions, making large systems more complicated and difficult to debug. The researchers' new application, however, involves components that are simple, standardized, effective, and scalable.
"You can imagine that in the computer industry, you want to make better and better computers," Dr. Qian said. "This is our effort to do the same. We want to make better and better biochemical circuits that can do more sophisticated tasks, driving molecular devices to act on their environment."
To construct their circuits, the researchers used pieces of DNA to make logic gates--devices that produce on-off output signals in response to on-off input signals. Biochemical circuits comprise molecules floating in salt water. DNA-based logic gates receive and produce molecules as signals. The molecular signals travel from one specific gate to another, connecting the circuit as if they were wires.
Dr. Winfree and his colleagues first built such a biochemical circuit in 2006. In this work, DNA signal molecules connected several DNA logic gates to each other, forming a multilayered circuit. However, this earlier circuit consisted of only 12 different DNA molecules, and the circuit slowed down by a few orders of magnitude when expanded from a single logic gate to a five-layered circuit. In their new design, the researchers have engineered logic gates that are simpler and more reliable, allowing them to make circuits at least five times larger.
The new logic gates are made from pieces of either short, single-stranded DNA or partially double-stranded DNA in which single strands stick out like tails from the DNA's double helix. The single-stranded DNA molecules act as input and output signals that interact with the partially double-stranded ones.
"The molecules are just floating around in solution, bumping into each other from time to time," Dr. Winfree explained. "Occasionally, an incoming strand with the right DNA sequence will zip itself up to one strand while simultaneously unzipping another, releasing it into solution and allowing it to react with yet another strand." Because the researchers can encode whatever DNA sequence they want, they have full control over this process. "You have this programmable interaction," he commented.
Drs. Qian and Winfree made several circuits with their approach, but the largest--containing 74 different DNA molecules--can compute the square root of any number up to 15 (essentially, a four-bit binary number) and round down the answer to the nearest integer. The researchers then monitor the concentrations of output molecules during the calculations to determine the answer. The calculation takes about 10 hours, so it will not replace a PC anytime soon. However, the purpose of these circuits is not to compete with electronics, but to give scientists logic control over biochemical processes.
All the logic gates have identical structures with different sequences. As a result, they can be standardized, so that the same types of components can be wired together to make different circuits. Moreover, according to Dr. Qian, the user does not have to know anything about the molecular machinery behind the circuit to make one. If you want a circuit that could automatically diagnoses a disease, one just submits an abstract representation of the logic functions in your design to a compiler that the researchers provide online, which will then translate the design into the DNA components needed to build the circuit.
The circuit components are also tunable. By adjusting the concentrations of the types of DNA, the researchers can alter the functions of the logic gates. The circuits are versatile, featuring plug-and-play components that can be easily reconfigured to rewire the circuit. The simplicity of the logic gates also allows for efficient techniques that synthesize them in parallel.
"Like Moore's Law for silicon electronics, which says that computers are growing exponentially smaller and more powerful every year, molecular systems developed with DNA nanotechnology have been doubling in size roughly every three years," Dr. Winfree says.
Dr. Qian added, "The dream is that synthetic biochemical circuits will one day achieve complexities comparable to life itself."
Related Links:
California Institute of Technology
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







