LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Protein Structure Revealed by Mass Spectrometry Technique

By LabMedica International staff writers
Posted on 31 May 2011
Print article
An advanced mass spectroscopy technique was used to detail the structure of a signaling protein critical to physiological processes involved in major diseases such as diabetes and cancer.

The protein, Epac2 (exchange protein directly activated by cAMP 2), is a guanine nucleotide exchange factor that regulates a wide variety of intracellular processes in response to second messenger cAMP (cyclic adenosine monophosphate).

A collaborative project was carried out by investigators at the University of Texas Medical Branch (Galveston, USA) and the University of California, San Diego (USA) to define the three-dimensional structure of Epac2 in the presence and absence of cAMP using an advanced mass spectroscopy technique known as hydrogen/deuterium exchange mass spectrometry (DXMS).

Results published in the May 20, 2011, issue of the Journal of Biological Chemistry revealed that that cAMP interacted with its two known binding sites on Epac2 in a sequential fashion and that binding of cAMP changed the shape of the protein in a very specific way. This shape change was caused by a major hinge motion centered on the C- terminus of the second cAMP binding domain. This conformational change realigned the regulatory components of Epac2 away from the catalytic core, making the later available for effector binding.

"This study applied a powerful protein structural analysis approach to investigate how a chemical signal called cAMP turns on one of its protein switches, Epac2," said senior author Dr. Xiaodong Cheng, professor of pharmacology and toxicology at the University of Texas Medical Branch.

"DXMS analysis has proved to be an amazingly powerful approach, alone or in combination with other techniques, in figuring out how proteins work as molecular machines, changing their shapes – or morphing – in the normal course of their function," said contributing author Dr. Virgil Woods, professor of medicine at the University of California, San Diego. "This will be of great use in the identification and development of therapeutic drugs that target these protein motions."

Related Links:
University of Texas Medical Branch
University of California, San Diego



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.