New Biosensor Microchip Could Speed Up Drug Development
|
By LabMedica International staff writers Posted on 04 May 2011 |
Researchers have developed a new biosensor microchip that could significantly speed up the process of drug development. The microchips, stuffed with highly sensitive "nanosensors” analyze how proteins bind to one another, a vital step for assessing the effectiveness and possible side effects of a potential medication.
A 1-cm-sized array of the nanosensors can monitor simultaneously and continuously thousands of times more protein-binding events than any existing sensor. The new sensor is also able to detect interactions with greater sensitivity and deliver the results significantly faster than the present gold standard method.
"You can fit thousands, even tens of thousands, of different proteins of interest on the same chip and run the protein-binding experiments in one shot,” said Dr. Shan Wang, a professor of materials science and engineering, and of electrical engineering, Stanford University (Stanford, CA, USA), who led the research effort.
"In theory, in one test, you could look at a drug's affinity for every protein in the human body,” said Richard Gaster, MD/PhD candidate in bioengineering and medicine, who is the first author of a paper describing the research that is in the April 2011 issue of Nature Nanotechnology, also available online.
The power of the nanosensor array lies in two advances. First, the use of magnetic nanotags attached to the protein being studied--such as a medication--greatly increases the sensitivity of the monitoring. Second, an analytic model the researchers developed enables them to predict accurately the final outcome of an interaction based on only a few minutes of monitoring data. Current techniques typically monitor no more than four simultaneous interactions and the process can take hours.
"I think their technology has the potential to revolutionize how we do bioassays,” said Dr. P.J. Utz, associate professor of medicine (immunology and rheumatology) at Stanford University Medical Center, who was not involved in the research.
Members of Dr. Wang's research group developed the magnetic nanosensor technology several years ago and demonstrated its sensitivity in research in which they demonstrated that it could detect a cancer-associated protein biomarker in mouse blood at a thousandth of the concentration that commercially available techniques could detect. That research was described in a 2009 paper in Nature Medicine.
The researchers customized the nanotags to attach to the particular protein being studied. When a nanotag-equipped protein binds with another protein that is attached to a nanosensor, the magnetic nanotag alters the ambient magnetic field around the nanosensor in a small but distinct way that is sensed by the detector.
"Let's say we are looking at a breast cancer drug,” Mr. Gaster said. "The goal of the drug is to bind to the target protein on the breast cancer cells as strongly as possible. But we also want to know: How strongly does that drug aberrantly bind to other proteins in the body?”
To establish that, the researchers would put breast cancer proteins on the nanosensor array, along with proteins from the liver, lungs, kidneys, and any other kind of tissue about which they are concerned. Then they would add the medication with its magnetic nanotags attached and see which proteins the drug binds with--and how strongly. "We can see how strongly the drug binds to breast cancer cells and then also how strongly it binds to any other cells in the human body such as your liver, kidneys, and brain,” Mr. Gaster said. "So we can start to predict the adverse affects to this drug without ever putting it in a human patient.”
It is the increased sensitivity to detection that comes with the magnetic nanotags that enables Mr. Gaster and Dr. Wang to determine not only when a bond forms, but also its strength. "The rate at which a protein binds and releases, tells how strong the bond is,” Mr. Gaster said. That can be an important factor with numerous medications. "I am surprised at the sensitivity they achieved,” Dr. Utz said. "They are detecting on the order of between 10 and 1,000 molecules and that to me is quite surprising.”
The nanosensor is based on the same type of sensor used in computer hard drives, Wang said. "Because our chip is completely based on existing microelectronics technology and procedures, the number of sensors per area is highly scalable with very little cost,” he said.
Although the chips used in the research described in the Nature Nanotechnology paper had a little more than 1,000 sensors per square centimeter, Dr. Wang stated it should be no problem to put tens of thousands of sensors on the same footprint. "It can be scaled to over 100,000 sensors per centimeter, without even pushing the technology limits in microelectronics industry,” he said.
Dr. Wang reported that he sees a promising future for increasingly powerful nanosensor arrays, because the technology infrastructure for making such nanosensor arrays is in place. "The next step is to marry this technology to a specific drug that is under development,” he concluded. "That will be the really killer application of this technology.”
Related Links:
Stanford University
A 1-cm-sized array of the nanosensors can monitor simultaneously and continuously thousands of times more protein-binding events than any existing sensor. The new sensor is also able to detect interactions with greater sensitivity and deliver the results significantly faster than the present gold standard method.
"You can fit thousands, even tens of thousands, of different proteins of interest on the same chip and run the protein-binding experiments in one shot,” said Dr. Shan Wang, a professor of materials science and engineering, and of electrical engineering, Stanford University (Stanford, CA, USA), who led the research effort.
"In theory, in one test, you could look at a drug's affinity for every protein in the human body,” said Richard Gaster, MD/PhD candidate in bioengineering and medicine, who is the first author of a paper describing the research that is in the April 2011 issue of Nature Nanotechnology, also available online.
The power of the nanosensor array lies in two advances. First, the use of magnetic nanotags attached to the protein being studied--such as a medication--greatly increases the sensitivity of the monitoring. Second, an analytic model the researchers developed enables them to predict accurately the final outcome of an interaction based on only a few minutes of monitoring data. Current techniques typically monitor no more than four simultaneous interactions and the process can take hours.
"I think their technology has the potential to revolutionize how we do bioassays,” said Dr. P.J. Utz, associate professor of medicine (immunology and rheumatology) at Stanford University Medical Center, who was not involved in the research.
Members of Dr. Wang's research group developed the magnetic nanosensor technology several years ago and demonstrated its sensitivity in research in which they demonstrated that it could detect a cancer-associated protein biomarker in mouse blood at a thousandth of the concentration that commercially available techniques could detect. That research was described in a 2009 paper in Nature Medicine.
The researchers customized the nanotags to attach to the particular protein being studied. When a nanotag-equipped protein binds with another protein that is attached to a nanosensor, the magnetic nanotag alters the ambient magnetic field around the nanosensor in a small but distinct way that is sensed by the detector.
"Let's say we are looking at a breast cancer drug,” Mr. Gaster said. "The goal of the drug is to bind to the target protein on the breast cancer cells as strongly as possible. But we also want to know: How strongly does that drug aberrantly bind to other proteins in the body?”
To establish that, the researchers would put breast cancer proteins on the nanosensor array, along with proteins from the liver, lungs, kidneys, and any other kind of tissue about which they are concerned. Then they would add the medication with its magnetic nanotags attached and see which proteins the drug binds with--and how strongly. "We can see how strongly the drug binds to breast cancer cells and then also how strongly it binds to any other cells in the human body such as your liver, kidneys, and brain,” Mr. Gaster said. "So we can start to predict the adverse affects to this drug without ever putting it in a human patient.”
It is the increased sensitivity to detection that comes with the magnetic nanotags that enables Mr. Gaster and Dr. Wang to determine not only when a bond forms, but also its strength. "The rate at which a protein binds and releases, tells how strong the bond is,” Mr. Gaster said. That can be an important factor with numerous medications. "I am surprised at the sensitivity they achieved,” Dr. Utz said. "They are detecting on the order of between 10 and 1,000 molecules and that to me is quite surprising.”
The nanosensor is based on the same type of sensor used in computer hard drives, Wang said. "Because our chip is completely based on existing microelectronics technology and procedures, the number of sensors per area is highly scalable with very little cost,” he said.
Although the chips used in the research described in the Nature Nanotechnology paper had a little more than 1,000 sensors per square centimeter, Dr. Wang stated it should be no problem to put tens of thousands of sensors on the same footprint. "It can be scaled to over 100,000 sensors per centimeter, without even pushing the technology limits in microelectronics industry,” he said.
Dr. Wang reported that he sees a promising future for increasingly powerful nanosensor arrays, because the technology infrastructure for making such nanosensor arrays is in place. "The next step is to marry this technology to a specific drug that is under development,” he concluded. "That will be the really killer application of this technology.”
Related Links:
Stanford University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







 Analyzer.jpg)