LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biochemical Basis for Broccoli's Cancer-Fighting Ability Discovered

By LabMedica International staff writers
Posted on 23 Mar 2011
Scientists are reporting discovery of a potential biochemical basis for the apparent cancer-fighting ability of broccoli and its vegetable relatives. They discovered for the first time that specific substances in the vegetables appear to target and block a defective gene associated with cancer.

The report, which could lead to new strategies for preventing and treating cancer, was published online January 11, 2011, in the American Chemical Society's (ACS) Journal of Medicinal Chemistry. Fung-Lung Chung, PhD, a professor of oncology, Lombardi Cancer Center, Georgetown University Medical Center (Washington DC, USA) and colleagues revealed in earlier research that compounds called isothiocyanates (ITCs)--found in broccoli, cauliflower, watercress, and other cruciferous vegetables--appear to stop the growth of cancer. However, nobody knew precisely how these substances work, a key to developing improved strategies for fighting cancer in humans. The tumor-suppressor gene p53 appears to play a major role in keeping cells healthy and preventing them from beginning the abnormal growth that is a hallmark of cancer. When mutated, p53 does not offer that protection, and those mutations occur in half of all human cancers. ITCs might work by targeting this gene, the report suggested.

The investigators evaluated the effects of certain naturally occurring ITCs on a variety of cancer cells, including lung, breast, and colon cancer, with and without the defective tumor-suppressor gene. They found that ITCs are capable of removing the defective p53 protein but seemingly leave the normal one alone. Drugs based on natural or custom-engineered ITCs could improve the effectiveness of current cancer treatments or lead to new strategies for treating and preventing cancer.

Related Links:

Georgetown University Medical Center


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Automated MALDI-TOF MS System
EXS 3000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more