LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Better Biosensors Made with Electron Density Waves

By LabMedica International staff writers
Posted on 18 Nov 2010
An emerging field called optofluidic plasmonics has the potential for a new way to detect and analyze biologic molecules for drug discovery, medical diagnostics, and the detection of biochemical weapons.

Investigators from the University of California, San Diego (UCSD; USA) led by Dr. Yeshaiahu Fainman have succeeded in merging a microfluidics system with plasmonics--also called "light on a wire”--onto a single platform. Plasmonics is based on electron waves on a metal surface excited by incoming light waves.

According to Dr. Fainman, tapping the potential of plasmonics for biomolecule detection systems has been a challenge, because localized optical field scales are usually much larger than the molecules being studied. In order to make a useful optical biosensor, he stated, "We need to increase the interaction cross-section by finding ways to localize optical interrogation fields ideally to the scales comparable to those of biomolecules.”

Since that is not currently possible, he and his team used an approach of integrating microfluidics and plasmonics on single chips, allowing fluid to transport the molecules into the cross-section of the optical field. Dr. Fainman expects the system to be especially beneficial in examining large arrays of protein-protein interactions for identifying potential drugs that bind to specific target molecules, which may lead to earlier cancer diagnoses and faster discovery of new drugs. Unlike most traditional techniques, optical detection does not require labeling of molecules with fluorescent or radioactive entities--labels frequently suppress interaction by covering up or blocking binding surfaces.

The new platform also carries the advantage of being high throughput and multiplexed, offering researchers an opportunity to examine thousands of arrayed compounds simultaneously, which Dr. Fainman concluded, "Biologists and physicians get very excited about.”

The study's findings were presentation, presented October 26, 2010, at the Frontiers in Optics (FiO) 2010/Laser Science XXVI--the 94th annual meeting of the Optical Society (OSA), which was held together with the annual meeting of the American Physical Society (APS) Division of Laser Science in Rochester, NY, USA, from October 24-28.

Related Links:
University of California, San Diego

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more