First Large-Scale Quantitative Test Validates Darwin's Theory of Universal Common Ancestry
|
By LabMedica International staff writers Posted on 17 Jun 2010 |
More than 150 years ago, Darwin proposed the theory of universal common ancestry (UCA), linking all forms of life by a shared genetic heritage from single-celled microorganisms to humans. Until now, the theory that makes all living organisms distant relatives has remained beyond the range of a formal test. Researchers have reported the findings of the first large scale, quantitative test of the famous theory that underpins modern evolutionary biology.
The results of the study confirmed that Darwin was, in fact, correct. In his 1859 book, On the Origin of Species, the British naturalist proposed that, "all the organic beings which have ever lived on this earth have descended from some one primordial form.” Over the last 150 years, qualitative evidence for this theory has grown, in the numerous, surprising transitional forms found in the fossil record, for example, and in the identification of far-reaching essential biologic similarities at the molecular level.
Still, discourse among some evolutionary biologists have recently emerged questioning whether the evolutionary relationships among living organisms are best described by a single "family tree” or rather by multiple, interconnected trees--a "web of life.” Recent molecular evidence indicates that primordial life may have undergone rampant horizontal gene transfer, which occurs frequently today when single-celled organisms swap genes using mechanisms other than usual organismal reproduction. In that case, some scientists argue, early evolutionary relationships were web-like, making it possible that life sprang up independently from many ancestors.
According to biochemist Dr. Douglas Theobald, from Brandeis University (Waltham, MA, USA), it does not really matter. "Let's say life originated independently multiple times, which UCA allows is possible,” said Dr. Theobald. "If so, the theory holds that a bottleneck occurred in evolution, with descendants of only one of the independent origins surviving until the present. Alternatively, separate populations could have merged, by exchanging enough genes over time to become a single species that eventually was ancestral to us all. Either way, all of life would still be genetically related."
Harnessing powerful computational tools and applying Bayesian statistics, Dr. Theobald found that the evidence overwhelmingly supports UCA, regardless of horizontal gene transfer or multiple origins of life. Dr. Theobald said UCA is millions of times more probable than any theory of multiple independent ancestries. "There have been major advances in biology over the last decade, with our ability to test Darwin's theory in a way never before possible,” said Dr. Theobald. "The number of genetic sequences of individual organisms doubles every three years, and our computational power is much stronger now than it was even a few years ago.”
Whereas other scientists have previously examined common ancestry more narrowly, for example, among only vertebrates, Dr. Theobald is the first to test formally Darwin's theory across all three domains of life. The three domains include diverse life forms such as the Eukarya, as well as Bacteria and Archaea.
Dr. Theobald examined a set of 23 universally conserved, basic proteins found in all known organisms. He chose to study four representative organisms from each of the three domains of life. For example, he researched the genetic links found among these proteins in archaeal microorganisms that generate marsh gas and methane in cows and the human gut; in fruit flies, humans, round worms, and baker's yeast; and in bacteria such as Escherichia coli and the pathogen that causes tuberculosis.
Dr. Theobald's study rests on several simple suppositions about how the diversity of modern proteins arose. First, he assumed that genetic copies of a protein could be multiplied during reproduction, such as when one parent gives a copy of one of their genes to several of their children. Second, he assumed that a process of replication and mutation over the eons might modify these proteins from their ancestral versions. These two factors, then, should have created the differences in the modern versions of these proteins seen throughout life today. Lastly, he assumed that genetic changes in one species do not affect mutations in another species--for example, genetic mutations in kangaroos do not affect those in humans.
What Dr. Theobald did not hypothesize, however, was how far back these processes go in linking organisms genealogically. These processes are able to link the shared proteins found in all humans to each other genetically. However, the answers to if the processes in these assumptions link humans to other animals; if these processes link animals to other eukaryotes; and if these processes link eukaryotes to the other domains of life, bacteria, and archaea turns out to be a definitive yes.
Just what did this universal common ancestor look like and where did it live? Dr. Theobald's study does not answer this question. Nevertheless, he speculated, "to us, it would most likely look like some sort of froth, perhaps living at the edge of the ocean, or deep in the ocean on a geothermal vent. At the molecular level, I'm sure it would have looked as complex and beautiful as modern life.”
The study's findings were published in the May 13, 2010, issue of the journal Nature.
Related Links:
Brandeis University
The results of the study confirmed that Darwin was, in fact, correct. In his 1859 book, On the Origin of Species, the British naturalist proposed that, "all the organic beings which have ever lived on this earth have descended from some one primordial form.” Over the last 150 years, qualitative evidence for this theory has grown, in the numerous, surprising transitional forms found in the fossil record, for example, and in the identification of far-reaching essential biologic similarities at the molecular level.
Still, discourse among some evolutionary biologists have recently emerged questioning whether the evolutionary relationships among living organisms are best described by a single "family tree” or rather by multiple, interconnected trees--a "web of life.” Recent molecular evidence indicates that primordial life may have undergone rampant horizontal gene transfer, which occurs frequently today when single-celled organisms swap genes using mechanisms other than usual organismal reproduction. In that case, some scientists argue, early evolutionary relationships were web-like, making it possible that life sprang up independently from many ancestors.
According to biochemist Dr. Douglas Theobald, from Brandeis University (Waltham, MA, USA), it does not really matter. "Let's say life originated independently multiple times, which UCA allows is possible,” said Dr. Theobald. "If so, the theory holds that a bottleneck occurred in evolution, with descendants of only one of the independent origins surviving until the present. Alternatively, separate populations could have merged, by exchanging enough genes over time to become a single species that eventually was ancestral to us all. Either way, all of life would still be genetically related."
Harnessing powerful computational tools and applying Bayesian statistics, Dr. Theobald found that the evidence overwhelmingly supports UCA, regardless of horizontal gene transfer or multiple origins of life. Dr. Theobald said UCA is millions of times more probable than any theory of multiple independent ancestries. "There have been major advances in biology over the last decade, with our ability to test Darwin's theory in a way never before possible,” said Dr. Theobald. "The number of genetic sequences of individual organisms doubles every three years, and our computational power is much stronger now than it was even a few years ago.”
Whereas other scientists have previously examined common ancestry more narrowly, for example, among only vertebrates, Dr. Theobald is the first to test formally Darwin's theory across all three domains of life. The three domains include diverse life forms such as the Eukarya, as well as Bacteria and Archaea.
Dr. Theobald examined a set of 23 universally conserved, basic proteins found in all known organisms. He chose to study four representative organisms from each of the three domains of life. For example, he researched the genetic links found among these proteins in archaeal microorganisms that generate marsh gas and methane in cows and the human gut; in fruit flies, humans, round worms, and baker's yeast; and in bacteria such as Escherichia coli and the pathogen that causes tuberculosis.
Dr. Theobald's study rests on several simple suppositions about how the diversity of modern proteins arose. First, he assumed that genetic copies of a protein could be multiplied during reproduction, such as when one parent gives a copy of one of their genes to several of their children. Second, he assumed that a process of replication and mutation over the eons might modify these proteins from their ancestral versions. These two factors, then, should have created the differences in the modern versions of these proteins seen throughout life today. Lastly, he assumed that genetic changes in one species do not affect mutations in another species--for example, genetic mutations in kangaroos do not affect those in humans.
What Dr. Theobald did not hypothesize, however, was how far back these processes go in linking organisms genealogically. These processes are able to link the shared proteins found in all humans to each other genetically. However, the answers to if the processes in these assumptions link humans to other animals; if these processes link animals to other eukaryotes; and if these processes link eukaryotes to the other domains of life, bacteria, and archaea turns out to be a definitive yes.
Just what did this universal common ancestor look like and where did it live? Dr. Theobald's study does not answer this question. Nevertheless, he speculated, "to us, it would most likely look like some sort of froth, perhaps living at the edge of the ocean, or deep in the ocean on a geothermal vent. At the molecular level, I'm sure it would have looked as complex and beautiful as modern life.”
The study's findings were published in the May 13, 2010, issue of the journal Nature.
Related Links:
Brandeis University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







