LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Enhancing Anticancer Activity Through Computer Modeling

By LabMedica International staff writers
Posted on 27 May 2009
Cancer immunologists used a computer modeling system to predict and manipulate the cancer fighting ability of populations of tumor-infiltrating lymphocytes isolated from metastatic melanoma patients.

Tumor-infiltrating lymphocytes (TILs) are heterogeneous cell populations that form an interconnected network that determines their collective reactivity against tumors. TILs are used in adoptive cell transfer therapy, where they are removed from a metastatic melanoma patient's tumor and evaluated for their antitumor activity. TILs that show the strongest antitumor response are expanded and then reinjected back into the patient.

In the current study investigators at the Technion-Israel Institute of Technology (Haifa, Israel) sought to understand why some TILs possessed more potent anticancer potential than others. To this end they used flow cytometry measurements to establish the characteristics of the immune cells within 91 TILs removed from 27 metastatic melanoma patients. Results of this study showed that each TIL comprised several different subpopulations of immune cells, with each subpopulation distinguished by a particular set of chemical markers on the cell surfaces. This data enabled the investigators to develop a system of computational modeling that established a set of rules to predict which TILs would show the most antitumor activity based on their particular combination of subpopulations.

Information obtained from the modeling system enabled the investigators to prepare TILs that were particularly potent or particularly inactive. Results published in the April 28, 2009, online edition of the journal Molecular Systems Biology revealed that in 12 nonreactive TILs taken from four patients, the investigators were able to induce a 106-fold increase in TIL antitumor activity by expanding an optimal blend of subpopulations within the TIL.

"The computational tools we developed allowed us to predict whether a TIL culture will respond to the tumor with an accuracy of more than 90%," said senior author Dr. Yoram Reiter, professor of biology at the Technion. "This enabled us to turn nonreactive TILs into reactive ones and vice versa. We need to expand the samples that we have tested from more patients, followed by more examples on TIL cultures that can be transformed from nonreactive to reactive."

Related Links:
Technion-Israel Institute of Technology


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Rapid Molecular Testing Device
FlashDetect Flash10

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more