LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Ultra-Fast Cameras Used To Visualize Molecular Activity

By LabMedica International staff writers
Posted on 23 Dec 2008
Scientists in Munich and Boston have been working with new three-dimensional (3D) imaging systems that use ultra-fast cameras to capture high resolution images of the molecular activity in laboratory mice engineered to develop lung cancer. With additional evaluation, the scientists reported the same approach could be used to study cancer in people.

The research was led by Dr. Vasilis Ntziachristos, director of the Institute for Biological and Medical Imaging at the Helmholtz Center (Munich, Germany), and Dr. Mark Niedre, assistant professor of electrical and computer engineering at Northeastern University (Boston, MA, USA). The technology involved required a sophisticated use of light. According to Dr. Niedre, they solved the problems associated with traditional infrared-imaging technology, resulting is a clearer image of molecular markers of inflammation and other lung disorders.

The inventory of genes and proteins associated with cancer and other diseases is growing rapidly: early in November 2008, for instance, scientists reported sequencing the whole genome of a cancer cell for the first time. Molecular imaging technology puts this data in context by allowing scientists to see biologic molecules in action inside diseased cells and tissues. Now, researchers have devised a molecular imaging technique that uses near-infrared light peer deeper into the body.

Fluorescent-protein tags can be generated to target nearly any biologic protein, be it an enzyme that helps cancer cells advance through surrounding tissue or a marker of arthritic inflammation. However, their use has been limited to shallow tissues in humans or to small animals. The markers are triggered by, and emit near-infrared or infrared light, which scatters in the tissue; the more tissue the light has to penetrate, the blurrier the images become. A new 3D near-infrared imaging system utilizes ultra-fast cameras to capture light that has not scattered. The technology been used to create clearer, higher-resolution images of the molecular workings of lung cancer in mice, and with further development, it might be used to study disease in thicker tissues and in humans.

This progress, according to the scientists, should quickly provide researchers with an inside look at how cancer metastasizes inside an animal. The scientists are now trying to determine the precise molecular mechanism that occurs as cancer spreads from one tumor site to another.

Related Links:
Helmholtz Center
Northeastern University

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Rapid Molecular Testing Device
FlashDetect Flash10

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more