LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Crystal Structure Reveals Secrets of Enzyme Inhibition

By LabMedica International staff writers
Posted on 01 Dec 2008
Researchers have used advanced X-ray crystallography techniques to explain how the enzyme inhibitor calpastatin binds to and blocks the enzyme calpain once it has been activated by calcium.

Calpains are non-lysosomal calcium-dependent cysteine proteinases that selectively cleave proteins in response to calcium signals and thereby control cellular functions such as cytoskeletal remodeling, cell cycle progression, gene expression, and apoptotic cell death. Following heart attack or stroke, the influx of blood into the heart muscle causes drastic increases in calcium levels and a burst of calpain activity, which causes significant damage to tissues.

Normally, the activity of calpains is tightly controlled by the endogenous inhibitor calpastatin, which is an intrinsically unstructured protein capable of reversibly binding and inhibiting four molecules of calpain, but only in the presence of calcium. It was not clear how this unstructured protein inhibits calpains without being cleaved itself, nor was it known how calcium induced changes that facilitated the binding of calpastatin to calpain.

Now, in a paper published in the November 20, 2008, issue of the journal Nature investigators at Queen's University (Kingston, ON, Canada) reported that they had obtained the 2.4-angstrom-resolution crystal structure of calcium-bound calpain bound by one of the four inhibitory domains of calpastatin. Calpastatin was seen to inhibit calpain by occupying both sides of the active site cleft. Although the inhibitor passed through the active site cleft, it escaped cleavage in a novel manner by looping out and around the active site cysteine. The inhibitory domain of calpastatin recognized multiple lower affinity sites present only in the calcium-bound form of the enzyme, resulting in an interaction that was tight, specific, and calcium dependent. This crystal structure, and that of a related complex, also revealed the conformational changes that calpain underwent on binding calcium, which included opening of the active site cleft and movement of the domains relative to each other to produce a more compact enzyme.

"This is particularly exciting because the enzyme structure we were seeking – and the way its inhibitor blocks activity without itself being damaged – have proved so elusive until now,” said senior author Dr. Peter Davies, professor of biochemistry at Queen's University.

Related Links:

Queen's University

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Laboratory Software
ArtelWare

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more