LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoparticles Heated by Radio Waves Kill Cells by Destroying Their DNA

By LabMedica International staff writers
Posted on 04 Nov 2008
A recent publication described the use of graphitic carbon-coated ferromagnetic cobalt nanoparticles to kill cells growing in tissue culture, which is the first step toward adapting the technique to destroy cancer cells in humans.

Investigators at the University of Arkansas (Little Rock, USA) used a catalytic chemical vapor deposition technique to synthesize cubic crystalline graphitic carbon-coated ferromagnetic cobalt nanoparticles (C–Co-NPs) with diameters of around seven nanometers. They used X-ray diffraction and X-ray photoelectron spectroscopy analysis to show that the cobalt nanoparticles inside the carbon shells were preserved in the metallic state. Then, they used fluorescence microscopy images and Raman spectroscopy to demonstrate that the nanoparticles effectively penetrated the cellular plasma membrane of cultured HeLa cells, both inside the cytoplasm and in the nucleus.

Data published in the October 29, 2008, issue of the journal Nanotechnology, revealed that low radio frequency (RF) radiation of 350 kHz induced localized heat into the metallic nanoparticles, which triggered the killing of the HeLa cells, a process that was found to be dependent on the RF application time and nanoparticle concentration. DNA gel electrophoresis assays of the HeLa cells after the RF treatment showed massive DNA fragmentation, which proved that the localized application of heat induced DNA damage and nucleus membrane disintegration.

"We have demonstrated that using a combination of a low frequency, low power radio frequency radiation – which has a high penetration ability in human tissue – with graphitic-magnetic composite nanoparticles could prove an excellent means of raising the temperature at the cellular level above the threshold required for DNA fragmentation or protein denaturation,” said senior author Dr. Alexandru Biris, assistant professor of applied science at the University of Arkansas. "The result is death of the cells. This technique is less invasive and possesses higher efficiency for targeting localized cells. It also has the potential to reduce the side effects associated with traditional cancer therapies.”

Related Links:
University of Arkansas


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more