Researchers Stop, Reverse Cirrhosis of the Liver
By Biotechdaily staff writers Posted on 17 Jan 2008 |
Researchers have shown in animal studies that fibrosis in the liver can be not only blocked, but reversed. Their discovery opens a new way to treat and cure conditions that lead to excessive tissue scarring such as viral hepatitis, fatty liver disease, cirrhosis, pulmonary fibrosis, scleroderma, and burns.
Six years ago, University of California, San Diego (UCSD) researchers found the cause of the excess fibrous tissue growth that leads to liver fibrosis and cirrhosis, and developed a way to stop excess scar tissue in mice. At that time, the best hope seemed to be future development of a therapy that would prevent or stop damage in patients suffering from the excessive scarring related to liver or lung disease or severe burns.
In their current study, Martina Buck, Ph.D., assistant professor of medicine at UCSD and the Veterans Affairs (VA) San Diego Healthcare System, and Mario Chojkier, M.D., UCSD professor of medicine and liver specialist at the VA, revealed that by blocking a protein linked to overproduction of scar tissue, they can not only stop the progression of fibrosis in mice, but reverse some of the cell damage that already occurred.
In response to liver injury-for example, cirrhosis caused by alcohol--hepatic stellate cell (HSC) activated by oxidative stress results in large amounts of collagen. Collagen is necessary to heal wounds, but excessive collagen causes scars in tissues. In this study, the researchers demonstrated that activation of a protein called RSK, results in HSC activation, and is critical for the progression of liver fibrosis. They hypothesized that the RSK pathway would be a potential therapeutic target, and developed an RSK inhibitory peptide to block activation of RSK.
The scientists used mice with severe liver fibrosis, similar to the condition in humans with cirrhosis of the liver, which was induced by chronic treatment with a liver toxin known to cause liver damage. The animals that continued taking the liver toxin were given the RSK-inhibitory peptide. The peptide suppressed RSK activation, which stopped the HSC from proliferating. The peptide also directly activated the caspase or "executioner” protein, which killed the cells producing liver cirrhosis but not the normal cells. "All control mice had severe liver fibrosis, while all mice that received the RSK-inhibitory peptide had minimal or no liver fibrosis,” said Dr. Buck.
Dr. Buck explained that the excessive collagen response is blocked by the RSK-inhibitory peptide, but is not harmful to the liver. "The cells continue to do their normal, healing work but their excess proliferation is controlled,” Dr. Buck said. "Remarkably, the death of HSC may also allow recovery from liver injury and reversal of liver fibrosis.”
The researchers found a similar activation of RSK in activated HSC in humans with severe liver fibrosis but not in control livers, suggesting that this pathway is also relevant in human liver fibrosis. Liver biopsies from patients with liver fibrosis also showed activated RSK.
The study expands on earlier research reported in 2001 in the journal Molecular Cell announcing that a team led by Dr. Buck had found that a small piece of an important regulatory protein called C/EBP beta was responsible for fibrous tissue growth, or excessive scar tissue following injury or illness. When normal scarring goes awry, excessive build-up of fibrous tissue can produce disfiguring scars or clog vital internal organs and lead to serious complications. Dr. Buck and colleagues developed a mutated protein that blocked this excessive fibrous tissue growth.
"Six years ago, we showed a way to prevent or stop the excessive scarring in animal models,” said Dr. Buck. "Our latest finding proves that we can actually reverse the damage.”
Worldwide, nearly 800,000 people die from liver cirrhosis annually, and there is currently no treatment for it. Excessive tissue repair in chronic liver disease induced by viral, toxic, immunologic, and metabolic disorders all result in excessive scar tissue, and could benefit from therapy developed from the UCSD researchers' findings.
The researchers published their findings in the journal PLoS Online on December 26, 2007.
Related Links:
University of California, San Diego
Six years ago, University of California, San Diego (UCSD) researchers found the cause of the excess fibrous tissue growth that leads to liver fibrosis and cirrhosis, and developed a way to stop excess scar tissue in mice. At that time, the best hope seemed to be future development of a therapy that would prevent or stop damage in patients suffering from the excessive scarring related to liver or lung disease or severe burns.
In their current study, Martina Buck, Ph.D., assistant professor of medicine at UCSD and the Veterans Affairs (VA) San Diego Healthcare System, and Mario Chojkier, M.D., UCSD professor of medicine and liver specialist at the VA, revealed that by blocking a protein linked to overproduction of scar tissue, they can not only stop the progression of fibrosis in mice, but reverse some of the cell damage that already occurred.
In response to liver injury-for example, cirrhosis caused by alcohol--hepatic stellate cell (HSC) activated by oxidative stress results in large amounts of collagen. Collagen is necessary to heal wounds, but excessive collagen causes scars in tissues. In this study, the researchers demonstrated that activation of a protein called RSK, results in HSC activation, and is critical for the progression of liver fibrosis. They hypothesized that the RSK pathway would be a potential therapeutic target, and developed an RSK inhibitory peptide to block activation of RSK.
The scientists used mice with severe liver fibrosis, similar to the condition in humans with cirrhosis of the liver, which was induced by chronic treatment with a liver toxin known to cause liver damage. The animals that continued taking the liver toxin were given the RSK-inhibitory peptide. The peptide suppressed RSK activation, which stopped the HSC from proliferating. The peptide also directly activated the caspase or "executioner” protein, which killed the cells producing liver cirrhosis but not the normal cells. "All control mice had severe liver fibrosis, while all mice that received the RSK-inhibitory peptide had minimal or no liver fibrosis,” said Dr. Buck.
Dr. Buck explained that the excessive collagen response is blocked by the RSK-inhibitory peptide, but is not harmful to the liver. "The cells continue to do their normal, healing work but their excess proliferation is controlled,” Dr. Buck said. "Remarkably, the death of HSC may also allow recovery from liver injury and reversal of liver fibrosis.”
The researchers found a similar activation of RSK in activated HSC in humans with severe liver fibrosis but not in control livers, suggesting that this pathway is also relevant in human liver fibrosis. Liver biopsies from patients with liver fibrosis also showed activated RSK.
The study expands on earlier research reported in 2001 in the journal Molecular Cell announcing that a team led by Dr. Buck had found that a small piece of an important regulatory protein called C/EBP beta was responsible for fibrous tissue growth, or excessive scar tissue following injury or illness. When normal scarring goes awry, excessive build-up of fibrous tissue can produce disfiguring scars or clog vital internal organs and lead to serious complications. Dr. Buck and colleagues developed a mutated protein that blocked this excessive fibrous tissue growth.
"Six years ago, we showed a way to prevent or stop the excessive scarring in animal models,” said Dr. Buck. "Our latest finding proves that we can actually reverse the damage.”
Worldwide, nearly 800,000 people die from liver cirrhosis annually, and there is currently no treatment for it. Excessive tissue repair in chronic liver disease induced by viral, toxic, immunologic, and metabolic disorders all result in excessive scar tissue, and could benefit from therapy developed from the UCSD researchers' findings.
The researchers published their findings in the journal PLoS Online on December 26, 2007.
Related Links:
University of California, San Diego
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channelMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreMolecular Diagnostics
view channel
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more