LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Complex DNA Repair Problems Underlie Genome Instability

By LabMedica International staff writers
Posted on 23 Jan 2019
Print article
Image: An example of DNA damage causing multiple broken chromosomes (Photo courtesy of Wikimedia Commons).
Image: An example of DNA damage causing multiple broken chromosomes (Photo courtesy of Wikimedia Commons).
While low levels of the protein ubiquilin-4 (UBQLN4) are linked to increased sensitivity to genotoxic stress and delayed DNA double-strand break repair, elevated levels of this DNA repair-associated protein have been found in particularly aggressive tumors.

Genomic instability can be a hallmark of both human genetic disease and cancer. Throughout the cell cycle DNA is monitored for damage. Damages result from errors during replication, by-products of metabolism, general toxic drugs, or ionizing radiation. The cell cycle has different DNA damage checkpoints, which inhibit the next or maintain the current cell cycle step. There are two main checkpoints, the G1/S and the G2/M, during the cell cycle, which preserve correct progression.

Investigators at Tel Aviv University (Israel) and their collaborators in Germany and the United States identified a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 plays a role in the regulation of protein degradation via the ubiquitin-proteasome system. It mediates the proteasomal targeting of misfolded or accumulated proteins for degradation by binding to their polyubiquitin chains and by interacting with the subunits of the proteasome.

As part of an ongoing study on the role of UBQLN4, the investigators reported in the January 3, 2019, online edition of the journal Cell that UBQLN4 deficiency led to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. UBQLN4 was phosphorylated by ATM (Ataxia-telangiectasia mutated) and interacted with ubiquitylated MRE11 (MRE11 homolog, double strand break repair nuclease) to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 led to chromatin retention of MRE11, which promoted non-physiological HRR activity in vitro and in vivo.

On the other hand, UBQLN4, which was found to be overexpressed in some aggressive tumors, repressed HRR and favored non-homologous end joining. In line with an HRR defect in these tumors, UBQLN4 overexpression was associated with PARP1 inhibitor sensitivity.

PARP1 (Poly [ADP-ribose] polymerase 1) is a protein that is important for repairing single-strand DNA breaks. If such nicks persist unrepaired until DNA is replicated (which must precede cell division), then the replication itself can cause double strand breaks to form. Drugs that inhibit PARP1 cause multiple double strand breaks to form in this way, and in tumors with BRCA1, BRCA2, or PALB2 mutations, these double strand breaks cannot be efficiently repaired, leading to the death of the cells. Normal cells that do not replicate their DNA as often as cancer cells, and that lack any mutated BRCA1 or BRCA2 still have homologous repair operating, which allows them to survive the inhibition of PARP1.

Since UBQLN4 curtails HRR activity through removal of MRE11 from damaged chromatin, it offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.

"This novel biomarker provides new, critical information about the tumor stage and grade, as well as the patient's chances of responding to treatment," said senior author Dr. Yosef Shiloh, professor of human genetics at Tel Aviv University. "Tumors with high levels of ubiquilin-4 may be more resistant to radiation and some types of chemotherapy than those with normal levels of this protein. But the good news is that they may also respond better to other types of cancer therapy. Obviously, this is vital information for clinicians and patients.

The importance of maintaining genome stability and integrity has been demonstrated through the study of rare genetic disorders, but genome stability has now become a public health issue. There are so many proteins involved in responding to DNA damage, and behind every protein is a different gene. There are infinite ways in which a gene can mutate. Various combinations of these mutations may lead to chronic diseases and a predisposition to cancer, premature aging and other conditions. Genome stability is everyone's problem."

"We hope our findings will provide a new tool for tumor classification, prognosis and treatment design," said Dr. Shiloh. "The research highlights the broader implications of the importance of genome stability for our health."

Related Links:
Tel Aviv University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.