We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mechanism Explains Why Damaged DNA Accumulates in ALS Neurons

By LabMedica International staff writers
Posted on 13 Nov 2018
Print article
Image: Identification of a link between motor neurons\' inability to repair oxidative genome damage in ALS suggests that DNA ligase-targeted therapies may prevent or delay disease progression (Photo courtesy of Hegde Laboratory, Houston Methodist Hospital).
Image: Identification of a link between motor neurons\' inability to repair oxidative genome damage in ALS suggests that DNA ligase-targeted therapies may prevent or delay disease progression (Photo courtesy of Hegde Laboratory, Houston Methodist Hospital).
A team of neurodegenerative disease researchers identified a mechanism that leads to the accumulation of damaged DNA in neurons that characterizes amyotrophic lateral sclerosis (ALS).

ALS is a neurodegenerative disease characterized by the selective and progressive death of upper and lower motor neurons. This leads to progressive muscle weakness, and death of the patient usually occurs within two to five years after the onset of symptoms. In approximately 10% of patients, there is a clear family history.

Genome damage and defective repair have been linked to neurodegeneration in conditions such as ALS. However, the specific mechanisms involved remain unclear. In this regards, investigators at Houston Methodist Hospital (TX, USA) identified defects - caused by mutations in the RNA/DNA-binding protein FUS - in DNA nick ligation and oxidative damage repair in a subset of ALS patients.

FUS rapidly appears at sites of DNA damage, which suggests that it is orchestrating the DNA repair response. The function of FUS in the DNA damage response in neurons involves a direct interaction with histone deacetylase 1 (HDAC1). The recruitment of FUS to double-strand break sites is important for DNA damage response signaling and for repair of DNA damage. FUS loss-of-function results in increased DNA damage in neurons. Mutations in the FUS nuclear localization sequence impair the poly (ADP-ribose) polymerase (PARP)-dependent DNA damage response. This impairment leads to neurodegeneration and FUS aggregate formation. Such FUS aggregates are a pathological hallmark of ALS.

The investigators examined the connection between FUS function and DNA ligation defects in multiple model systems, including CRISPR/Cas9-mediated FUS knockout (KO) cells, familial ALS patient-derived induced pluripotent stem cells (iPSCs) with FUS mutations, motor neurons differentiated from these patient-derived iPSCs, and spinal cord tissue with FUS pathology from ALS patients.

Result published in the September 11, 2018, online edition of the journal Nature Communications revealed that loss of nuclear FUS caused DNA nick ligation defects in motor neurons due to reduced recruitment to DNA strand breaks of the XRCC1/LigIII enzyme complex. DNA ligation defects in ALS patient-derived iPSC lines carrying FUS mutations and in motor neurons generated therefrom were rescued by CRISPR/Cas9-mediated correction of the mutation.

These findings revealed a pathway of defective DNA ligation in FUS-linked ALS and suggested that LigIII-targeted therapies could prevent or delay progression of the disease.

Related Links:
Houston Methodist Hospital

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.