Research Determines Why Different Cancers Display Similar Profiles
By LabMedica International staff writers Posted on 17 Oct 2018 |

Image: A photomicrograph of small cell neuroendocrine prostate cancer: cancer cells are seen expressing diagnostic prostate cancer markers in green and red (blue color indicates the cell nucleus) (Photo courtesy of Jung Wook Park & Owen Witte, University of California, Los Angeles).
A team of cancer researchers has identified a molecular mechanism that may explain why gene expression profiles are similar in late stage cancers from different organs.
The use of modern chemotherapeutic techniques to treat epithelial cancers leads to the development of multiple resistance mechanisms, including the generation of highly aggressive, small cell neuroendocrine carcinoma (SCNC). SCNC patients have a poor prognosis due in part to a limited understanding of the molecular mechanisms driving this malignancy and the lack of effective treatments. In particular, whether distinct cancer types accomplish this “reprogramming” through the same mechanism has been unclear.
Investigators at the University of California, Los Angeles (USA) reported in the October 5, 2018, issue of the journal Science that while healthy prostate and lung cells have very different patterns of gene expression, they display almost identical patterns when they transform into small cell cancers.
The investigators found that a common set of defined oncogenic drivers reproducibly reprogrammed normal human prostate and lung epithelial cells and transformed them into small cell prostate cancer (SCPC) and small cell lung cancer (SCLC), respectively. They identified shared active transcription factor binding regions in the reprogrammed prostate and lung SCNCs by integrative analyses of epigenetic and transcriptional landscapes.
"Small cell cancers of the lung, prostate, bladder, and other tissues were long thought to be similar in name alone - and they were treated by oncologists as different entities," said senior author Dr. Owen Witte, professor of microbiology, immunology, and molecular genetics at the University of California, Los Angeles. "Over the past few years, though, researchers have increasingly begun to realize that there are similarities in the cancers, and that's what our work confirms. Our study revealed shared "master gene regulators" - the key proteins that control expression of multiple genes in small cell cancer cells. Studying the network of the master gene regulators could lead to a new way of combating deadly cancers."
Overall, the results presented in this study suggest that neuroendocrine cancers arising from distinct epithelial tissues may share common vulnerabilities that could be exploited for the development of new drugs to treat SCNCs.
Related Links:
University of California, Los Angeles
The use of modern chemotherapeutic techniques to treat epithelial cancers leads to the development of multiple resistance mechanisms, including the generation of highly aggressive, small cell neuroendocrine carcinoma (SCNC). SCNC patients have a poor prognosis due in part to a limited understanding of the molecular mechanisms driving this malignancy and the lack of effective treatments. In particular, whether distinct cancer types accomplish this “reprogramming” through the same mechanism has been unclear.
Investigators at the University of California, Los Angeles (USA) reported in the October 5, 2018, issue of the journal Science that while healthy prostate and lung cells have very different patterns of gene expression, they display almost identical patterns when they transform into small cell cancers.
The investigators found that a common set of defined oncogenic drivers reproducibly reprogrammed normal human prostate and lung epithelial cells and transformed them into small cell prostate cancer (SCPC) and small cell lung cancer (SCLC), respectively. They identified shared active transcription factor binding regions in the reprogrammed prostate and lung SCNCs by integrative analyses of epigenetic and transcriptional landscapes.
"Small cell cancers of the lung, prostate, bladder, and other tissues were long thought to be similar in name alone - and they were treated by oncologists as different entities," said senior author Dr. Owen Witte, professor of microbiology, immunology, and molecular genetics at the University of California, Los Angeles. "Over the past few years, though, researchers have increasingly begun to realize that there are similarities in the cancers, and that's what our work confirms. Our study revealed shared "master gene regulators" - the key proteins that control expression of multiple genes in small cell cancer cells. Studying the network of the master gene regulators could lead to a new way of combating deadly cancers."
Overall, the results presented in this study suggest that neuroendocrine cancers arising from distinct epithelial tissues may share common vulnerabilities that could be exploited for the development of new drugs to treat SCNCs.
Related Links:
University of California, Los Angeles
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more