We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetically Engineered Zika Virus Slows Tumor Growth in Model

By LabMedica International staff writers
Posted on 11 Oct 2018
Print article
Image: A digitally colorized transmission electron microscopic (TEM) image of Zika virus. Virus particles, here colored blue, are 40 nanometers in diameter, with an outer envelope and an inner dense core (Photo courtesy of the CDC).
Image: A digitally colorized transmission electron microscopic (TEM) image of Zika virus. Virus particles, here colored blue, are 40 nanometers in diameter, with an outer envelope and an inner dense core (Photo courtesy of the CDC).
Injecting mice carrying human glioblastoma tumors with modified Zika virus was shown to significantly reduce intracerebral tumor growth and prolong animal survival.

Glioblastoma is the most common primary tumor of the central nervous system and is almost always fatal. The aggressive invasion of glioblastoma cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Treatment of glioblastoma usually comprises surgical removal of the tumor followed by radiation treatment and chemotherapy using the drug temozolomide (TMZ). These treatments usually fail, mainly due to the presence of a cell subpopulation called glioma stem cells (GSCs), which are resistant to radiation and chemotherapy and are capable of self-renewal and tumor generation.

Previous studies had shown that Zika virus (ZIKV) attacked and killed GSCs grown in culture and in a mouse model of glioblastoma. To expand the scope of these earlier findings, investigators at the University of Texas Medical Branch (Galveston, USA) and Chinese collaborators developed a genetically modified live attenuated ZIKV vaccine (ZIKV-LAV) that contained a 10-nucleotide deletion in the 3′ untranslated region (3′UTR) of the viral genome. This method for engineering ZIKV eliminated its virulence but maintained its oncolytic activity against GBM.

The goals of this study were to (i) profile the safety of ZIKV-LAV for intracerebral injection, (ii) evaluate the in vivo efficacy of ZIKV-LAV against GBM in a patient-derived GSC orthotopic mouse model, and (iii) define the oncolytic mechanism of ZIKV-LAV during GBM treatment.

The investigators reported in the September 18, 2018, online edition of the journal mBio that intracerebral injection of ZIKV-LAV into mice caused no neurological symptoms or behavioral abnormalities. ZIKV-LAV significantly reduced intracerebral tumor growth and prolonged animal survival by selectively killing GSCs within the tumor. Mechanistically, ZIKV infection elicited antiviral immunity, inflammation, and GSC apoptosis.

"During the Zika epidemic, we learned that the virus preferentially infects neural progenitor cells in the fetus, and causes the devastating microcephaly seen in babies born to infected mothers," said contributing author Dr. Pei-Yong Shi, professor of human genetics at the University of Texas Medical Branch. "As a virologist, I see that we should take advantage of the "bad' side of viruses. They should have a role to play in cancer treatment."

Related Links:
University of Texas Medical Branch

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.