LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Smart Release Skin Patch Corrects Type II Diabetes in Model

By LabMedica International staff writers
Posted on 10 Jan 2018
Print article
Image: The illustration depicts glucose-responsive exendin-4 delivery via microneedle patch. At left, relatively lower glucose levels (turquoise) in blood induce a mild chemical reaction with the compounds in the patch, which is not sufficient to release exendin-4. At right, when blood glucose concentration rises, acidity in blood triggers rapid release of exendin-4 (pink) for blood glucose regulation. The result is a smart, long-acting and on-demand exendin-4 release (Photo courtesy of the Chen laboratory, National Institute of Biomedical Imaging and Bioengineering).
Image: The illustration depicts glucose-responsive exendin-4 delivery via microneedle patch. At left, relatively lower glucose levels (turquoise) in blood induce a mild chemical reaction with the compounds in the patch, which is not sufficient to release exendin-4. At right, when blood glucose concentration rises, acidity in blood triggers rapid release of exendin-4 (pink) for blood glucose regulation. The result is a smart, long-acting and on-demand exendin-4 release (Photo courtesy of the Chen laboratory, National Institute of Biomedical Imaging and Bioengineering).
A novel approach for treating type II diabetes is based on microneedle-array patches that are loaded with dual mineralized protein/peptide particles that release the hormone exendin-4 in response to elevated blood sugar levels.

Exendin-4 (Ex4) is a hormone first isolated in 1992 from the saliva of the Gila monster (Heloderma suspectum). It is a 39-amino-acid peptide, which induces secretion of insulin with glucoregulatory effects. Ex4 increases insulin secretion in response to eating meals; the result is the release of a higher, more appropriate amount of insulin that helps lower the rise in blood sugar from eating. Once blood sugar levels decrease closer to normal values, the pancreatic response to produce insulin is reduced. Synthetic Ex4 (Exenatide) was approved by the [U.S.] Food and Drug Administration in 2005 for patients whose diabetes was not well controlled by other oral medication.

Investigators at the [U.S.] National Institute of Biomedical Imaging and Bioengineering (Bethesda, MD, USA) recently described a novel way to deliver Ex4 as part of a bimodal therapeutic approach to treat type II diabetes. The investigators immobilized and stabilized Ex4 by integrating it into mineral particles composed of calcium phosphate. A second drug compound, the enzyme glucose oxidase (GOx), was similarly immobilized in particles composed of copper phosphate. Both mineral complexes were loaded into a patch containing alginate microneedles.

The microneedle patch concept was tested in a diabetes mouse model. After application, the needles released the mineral complexes through the skin. When blood sugar was elevated beyond a precise point, reaction with copper phosphate and glucose oxidase produced slight acidity, which caused calcium phosphate to release some Ex4. Rising glucose levels triggered the release of Ex4, which induced insulin secretion to reduce the glucose level, which in turn reduced and stopped Ex4 release. As an added bonus, integration of mineralized particles enhanced the mechanical strength of the alginate-based microneedles by crosslinking to facilitate skin penetration.

Results published in the November 26, 2017, online edition of the journal Nature Communications revealed that a patch about half an inch square contained sufficient drug to control blood sugar levels in mice for a week.

“That is why we call it responsive, or smart release,” said senior author Dr. Xiaoyuan Chen, senior investigator in the laboratory of molecular imaging and nanomedicine at the National Institutes of Health. “Most current approaches involve constant release. Our approach creates a wave of fast release when needed and then slows or even stops the release when the glucose level is stable. Diabetes is a very serious disease and affects a lot of people. Everybody is looking for a long-acting formula.”

Related Links:
National Institute of Biomedical Imaging and Bioengineering

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.