LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Method Described for Producing Polymersomes of Different Shapes

By LabMedica International staff writers
Posted on 15 Nov 2017
Print article
Image: Tubular shaped polymersomes - plastic nanoparticles that can encapsulate drugs (Photo courtesy of the University of New South Wales).
Image: Tubular shaped polymersomes - plastic nanoparticles that can encapsulate drugs (Photo courtesy of the University of New South Wales).
A team of Australian chemists recently described a novel method for conveniently producing polymersomes of different shapes and properties.

Polymersomes are similar to liposomes, which are vesicles formed from naturally occurring lipids. While having many of the properties of natural liposomes, polymersomes exhibit increased stability and reduced permeability. Furthermore, the use of synthetic polymers enables designers to manipulate the characteristics of the membrane and thus control permeability, release rates, stability, and other properties of the polymersome. However, exploiting the full potential of polymersomes has been hindered by a lack of versatile methods for shape control.

To ameliorate this situation, investigators at the University of New South Wales (Sydney, Australia) devised a supramolecular strategy to produce non-spherical polymersomes with anisotropic membranes from polymers bearing perylene aromatic side chains. Anisotropy is the property of being directionally dependent, which implies different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties.

The investigators showed that a range of non-spherical polymersome morphologies with anisotropic membranes could be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure.

Perylenes were chosen to provide the aromatic interactions in the system due to their strong tendency to aggregate in water, and how their aggregation behavior could easily be probed by means of UV–Vis and fluorescence spectroscopy. The key to this approach was to utilize the directional nature of aromatic supramolecular interactions in combination with their increased strength due to hydrophobicity as the self-assembled structure moved from an organic solvent (tetrahydrofuran (THF)) to water.

Results published in the November 1, 2017, online edition of the journal Nature Communications revealed that through concentration and solvent changes, it was possible to control the extent of solvation/desolvation of the aromatic perylene surfaces on the polymer, and ultimately introduce anisotropic membrane tension in the polymersome membrane structure, generating the observed ellipsoidal or tubular-shaped polymersomes. Extensive characterization of the polymersomes by means of spectroscopy and microscopy further revealed that not only did these polymersomes possess non-spherical shapes, but also unusual membrane properties.

"Our breakthrough means we can predictably make smart polymers that shift their shape according to the different conditions around them to form tiny ellipsoidal or tubular structures that can encapsulate drugs. We have preliminary evidence that these more natural-shaped plastic nanoparticles enter tumor cells more easily than spherical ones," said senior author Dr. Pall Thordarson, professor of chemistry at the University of New South Wales.

Related Links:
University of New South Wales

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.