LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Some CRISPR Gene Editing Complexes Target RNA

By LabMedica International staff writers
Posted on 15 Mar 2016
Print article
Image: Representation of the crystal structure of a CRISPR-associated protein (Photo courtesy of Wikimedia Commons).
Image: Representation of the crystal structure of a CRISPR-associated protein (Photo courtesy of Wikimedia Commons).
A team of molecular microbiologists have demonstrated that in some bacteria the CRISPR/Cas genome editing complex can edit RNA as well as DNA.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with Cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

CRISPR systems are phylogenetically grouped into five types (types I to V). In addition to the CRISPR/Cas9 complex, CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new viral threats in type I and II CRISPR systems by the acquisition of short segments of DNA (spacers) from invasive elements. In several type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT) enzyme.

Such an arrangement suggested the possibility of a spacer integration mechanism involving Cas1 integrase activity and the reverse transcription of RNA to DNA. This would enable the acquisition of new spacers from RNA, potentially generating adaptive immunity against RNA-based viruses. To test this hypothesis, investigators at the Carnegie Institution for Science Department of Plant Biology (Stanford, CA, USA) characterized the spacer acquisition machinery of the RT-Cas1–containing type III-B CRISPR system in the bacterium Marinomonas mediterranea (MMB-1), by means of in vivo assays and in vitro reconstitution.

Results published in the February 26, 2016, issue of the journal Science revealed that a natural RT-Cas1 fusion protein in a type III CRISPR system could enable the acquisition of new spacers directly from RNA. With other type III CRISPR systems known to target RNA for degradation, RT-associated CRISPR-Cas systems would effectively generate adaptive immunity against RNA parasites.

Contributing author Dr. Devaki Bhaya professor of biology at the Carnegie Institution of Science Department of Plant Biology, said, "The team has demonstrated that this biochemical process can occur in the lab, and based on this information, the CRISPR/Cas system may confer immunity against RNA-based invaders out there in the wild. It is gratifying to see how much we can learn from the extraordinary protein diversity that exists in the microbial and viral world, especially when it is combined with rigorous biochemistry."

Related Links:

Carnegie Institution for Science Department of Plant Biology


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.