LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

PTEN Requires a Stable Dimer Configuration to Effectively Suppress Tumor Growth

By LabMedica International staff writers
Posted on 01 Sep 2015
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).
Molecular structural analysis has shown that the PTEN (phosphatase and tensin homolog) tumor suppressor can function effectively only when two wild-type alleles are present to form a stable dimer that can act on lipids in the cell membrane.

PTEN, which is missing in 60% to 70% of metastatic cancers in humans, is the name of a phospholipid phosphatase protein, and gene that encodes it. The PTEN gene acts as a tumor suppressor gene thanks to the role of its protein product in regulation of the cycle of cell division, preventing cells from growing and dividing too rapidly.

Due to difficulties in crystallizing the PTEN dimer, investigators at Carnegie Mellon University (Pittsburgh, PA, USA) and a group of international collaborators used an advanced small-angle X-ray scattering (SAXS) technique to establish its structure in aqueous solution.

They reported in the August 20, 2015, online edition of the journal Structure that PTEN formed homodimers in vitro. To be fully functional, the C-terminal tails of the two proteins comprising the PTEN dimers had to bind the protein bodies in a cross-wise fashion, which made them more stable. As a result, they could more efficiently interact with the cell membrane, regulate cell growth, and suppress tumor formation.

Phosphorylation of the unstructured C-terminal tail of PTEN reduced PTEN activity, and this result was interpreted as a blockage of the PTEN membrane binding interface through this tail. The results presented in this paper instead suggested that the C-terminal tail functioned in stabilizing the homodimer, and that tail phosphorylation interfered with this stabilization.

"Membrane-incorporated and membrane-associated proteins like PTEN make up one-third of all proteins in our body. Many important functions in health and disease depend on their proper functioning," said senior author Dr. Mathias Lösche, professor of physics and of biomedical engineering at Carnegie Mellon University. "Despite PTEN's importance in human physiology and disease, there is a critical lack of understanding of the complex mechanisms that govern its activity."

Related Links:

Carnegie Mellon University


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more