Simulation Gives Clues About Forces Underlying Fundamental Cellular Processes
By LabMedica International staff writers Posted on 28 Apr 2014 |

Image: Cell-like features in computer simulated active droplets: Left – static distortion; Middle – motility; Right: division (Photo courtesy of Dr. Luca Giomi and Dr. Antonio DeSimone, SISSA).
Researchers have developed a simulation model resulting in clues to physical conditions that help drive cell division and motility. The results may also hint at conditions that helped facilitate the original transition from inanimate to living matter.
Active droplets of filamentous material enclosed in a lipid membrane are the main cell-like characteristics modeled in a program, developed by physicists Luca Giomi and Antonio DeSimone of the International School for Advanced Studies (SISSA; Scuola Internazionale Superiore di Studi Avanzati; Trieste, Italy), for numerical simulations to investigate the mechanics of “simplified” pre-cell structures. The simulations indicated a spontaneous emergence of features reminiscent of living material—of cell-like motility and division.
The model mimics some of the physical properties of cells: “Our ‘cells’ are a bare bones representation of a biological cell, which normally contains microtubules, elongated proteins, enclosed in an essentially lipid cell membrane," said Dr. Giomi; "The filaments contained in the ‘cytoplasm’ of our cells slide over one another exerting a force that we can control." The force exerted by the filaments is the variable that competes with another force, the surface tension that prevents the membrane surrounding the droplet from collapsing. This "competition" generates a flow in the fluid surrounding the droplet, and the droplet is in turn propelled by this self-generated hydrodynamic flow. When the flow becomes very strong, the droplet deforms to the point of dividing: "When the force of the flow prevails over the force that keeps the membrane together we have ‘cellular’ division," said Dr. DeSimone, director of the SISSA mathLab, SISSA's mathematical modeling and scientific computing laboratory.
"We showed that by acting on a single physical parameter in a very simple model we can reproduce similar effects to those obtained with experimental observations," continued Dr. DeSimone. Empirical observations on microtubule specimens have shown that these also move outside the cell environment, in a manner proportional to the energy they have (derived from ATP). "Similarly, our droplets, fuelled by their ‘inner’ energy alone—without forces acting from the outside—are able to move and even divide," he said.
The study, described in the April 10, 2014, online issue of the journal Physical Review Letters, is a step forward toward creating functional artificial cells and toward a better understanding of the first passages from which life has developed: "Acquiring motility and the ability to divide is a fundamental step for life and, according to our simulations, the laws governing these phenomena could be very simple. Observations like ours can prepare the way for the creation of functioning artificial cells, and not only," said Dr. Giomi. "Our work is also useful for understanding the transition from non-living to living matter on our planet." Chemists and biologists who study the origin of life lack access to cells that are sufficiently simple. "Even the simplest organism existing today has undergone billions of years of evolution, and will always contain fairly complex structures," noted Dr. Giomi.
Related Links:
SISSA, International School for Advanced Studies
Active droplets of filamentous material enclosed in a lipid membrane are the main cell-like characteristics modeled in a program, developed by physicists Luca Giomi and Antonio DeSimone of the International School for Advanced Studies (SISSA; Scuola Internazionale Superiore di Studi Avanzati; Trieste, Italy), for numerical simulations to investigate the mechanics of “simplified” pre-cell structures. The simulations indicated a spontaneous emergence of features reminiscent of living material—of cell-like motility and division.
The model mimics some of the physical properties of cells: “Our ‘cells’ are a bare bones representation of a biological cell, which normally contains microtubules, elongated proteins, enclosed in an essentially lipid cell membrane," said Dr. Giomi; "The filaments contained in the ‘cytoplasm’ of our cells slide over one another exerting a force that we can control." The force exerted by the filaments is the variable that competes with another force, the surface tension that prevents the membrane surrounding the droplet from collapsing. This "competition" generates a flow in the fluid surrounding the droplet, and the droplet is in turn propelled by this self-generated hydrodynamic flow. When the flow becomes very strong, the droplet deforms to the point of dividing: "When the force of the flow prevails over the force that keeps the membrane together we have ‘cellular’ division," said Dr. DeSimone, director of the SISSA mathLab, SISSA's mathematical modeling and scientific computing laboratory.
"We showed that by acting on a single physical parameter in a very simple model we can reproduce similar effects to those obtained with experimental observations," continued Dr. DeSimone. Empirical observations on microtubule specimens have shown that these also move outside the cell environment, in a manner proportional to the energy they have (derived from ATP). "Similarly, our droplets, fuelled by their ‘inner’ energy alone—without forces acting from the outside—are able to move and even divide," he said.
The study, described in the April 10, 2014, online issue of the journal Physical Review Letters, is a step forward toward creating functional artificial cells and toward a better understanding of the first passages from which life has developed: "Acquiring motility and the ability to divide is a fundamental step for life and, according to our simulations, the laws governing these phenomena could be very simple. Observations like ours can prepare the way for the creation of functioning artificial cells, and not only," said Dr. Giomi. "Our work is also useful for understanding the transition from non-living to living matter on our planet." Chemists and biologists who study the origin of life lack access to cells that are sufficiently simple. "Even the simplest organism existing today has undergone billions of years of evolution, and will always contain fairly complex structures," noted Dr. Giomi.
Related Links:
SISSA, International School for Advanced Studies
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more