Histone Acetylation Determines Cellular DNA-Repair Strategy
|
By LabMedica International staff writers Posted on 19 Feb 2013 |

Image: A model showing that TIP60/NuA4-dependent acetylation limits 53BP1 binding to histone H4 when present on the same histone H4 tail with the mark H4K20Me2, a recognition mark for 53BP1. A TIP60 deficiency would result in reduced H4 acetylation, and increased 53BP1 binding, thus blocking BRCA1 function at DNA double-strand breaks (Photo courtesy of Dr. Roger A. Greenberg, Perelman School of Medicine, University of Pennsylvania).
A team of cancer biologists have identified the molecular signal that determines which repair mechanism will be used by a cell to repair broken double-strand DNA.
Double-strand DNA breaks (DSBs) are a regular occurrence in dividing cells or may result from damage caused by ionizing radiation, reactive oxygen species (ROS), or exposure to carcinogenic chemicals. The way the cell repairs the break will determine whether the cell continues to live normally, enters into the programmed cell death pathway (apoptosis), or transforms into a cancer cell.
Investigators at the University of Pennsylvania (Philadelphia, USA) studied DNA repair in cultures of human and mouse cells. They reported in the February 3, 2013, online edition of the journal Nature Structural & Molecular Biology that the interaction of two genes, BRCA1 and 53BP1, controlled which of two DNA-repair mechanisms would be used: homologous recombination or nonhomologous end-joining.
BRCA1 (breast cancer 1, early onset) is a human caretaker gene that produces a protein called breast cancer type 1 susceptibility protein, responsible for repairing DNA. BRCA1 is expressed in the cells of breast and other tissue, where it helps repair damaged DNA, or destroy cells if DNA cannot be repaired. If BRCA1 itself is defective, damaged DNA is not repaired properly and this increases risks for cancers. 53BP1 (p53 binding protein 1) is a protein that contains tandem BRCA1 C-terminal sequence motifs in its C-terminal region, through which it binds the tumor suppressor protein p53. It co-localizes with DNA damage response proteins and is a critical regulator of cell cycle checkpoint signaling. Mice deficient in 53Bp1 show growth retardation, immune deficiency, and sensitivity to irradiation and are cancer prone.
A balance between BRCA1 and 53BP1 regulates DNA double strand-break repair mechanism choice, and acetylation of histones is a key determinant of this balance. TIP60 acetyltransferase deficiency - lowered acetylation - reduced BRCA1 at DSB chromatin with commensurate increases in 53BP1, whereas HDAC (histone deacetylase) inhibition - increased acetylation - yielded the opposite effect. TIP60-dependent acetylation of histone H4 diminished 53BP1 binding to the histone H4K20me2 in part through disruption of a salt bridge. Moreover, TIP60 deficiency impaired homologous recombination and conferred sensitivity to PARP (poly(ADP-ribose) polymerase) inhibition in a 53BP1-dependent manner. Cancer cells with BRCA deficiencies survive with only one DNA repair mechanism. When the PARP1 protein is inhibited, that second repair mechanism is also inhibited, DNA repair is drastically reduced, and the cell dies.
"The story did not fall into place the way we thought it would," said senior author Dr. Roger A. Greenberg, associate professor of cancer biology at the University of Pennsylvania. "We did not realize that it was a combination of two epigenetic marks that drives the repair system. However, we were able to show that 53BP1 does not bind well to regions of histone H4 that are acetylated at a specific location on H4. We think there will be further complexity to this regulation, creating the possibility for the discovery of additional mechanisms that regulate DNA repair pathways and response to therapy and potential new targets for diagnosis and therapy."
"If you could inhibit specific acetylation events, then a patient's response to PARP inhibitors might be enhanced by hyperactivating 53BP1 binding to breaks in the context of BRCA1 deficient cancers," said Dr. Greenberg. "What is more, measuring the levels of acetylation at H4 might predict how responsive an individual is to PARP inhibitors."
Related Links:
University of Pennsylvania
Double-strand DNA breaks (DSBs) are a regular occurrence in dividing cells or may result from damage caused by ionizing radiation, reactive oxygen species (ROS), or exposure to carcinogenic chemicals. The way the cell repairs the break will determine whether the cell continues to live normally, enters into the programmed cell death pathway (apoptosis), or transforms into a cancer cell.
Investigators at the University of Pennsylvania (Philadelphia, USA) studied DNA repair in cultures of human and mouse cells. They reported in the February 3, 2013, online edition of the journal Nature Structural & Molecular Biology that the interaction of two genes, BRCA1 and 53BP1, controlled which of two DNA-repair mechanisms would be used: homologous recombination or nonhomologous end-joining.
BRCA1 (breast cancer 1, early onset) is a human caretaker gene that produces a protein called breast cancer type 1 susceptibility protein, responsible for repairing DNA. BRCA1 is expressed in the cells of breast and other tissue, where it helps repair damaged DNA, or destroy cells if DNA cannot be repaired. If BRCA1 itself is defective, damaged DNA is not repaired properly and this increases risks for cancers. 53BP1 (p53 binding protein 1) is a protein that contains tandem BRCA1 C-terminal sequence motifs in its C-terminal region, through which it binds the tumor suppressor protein p53. It co-localizes with DNA damage response proteins and is a critical regulator of cell cycle checkpoint signaling. Mice deficient in 53Bp1 show growth retardation, immune deficiency, and sensitivity to irradiation and are cancer prone.
A balance between BRCA1 and 53BP1 regulates DNA double strand-break repair mechanism choice, and acetylation of histones is a key determinant of this balance. TIP60 acetyltransferase deficiency - lowered acetylation - reduced BRCA1 at DSB chromatin with commensurate increases in 53BP1, whereas HDAC (histone deacetylase) inhibition - increased acetylation - yielded the opposite effect. TIP60-dependent acetylation of histone H4 diminished 53BP1 binding to the histone H4K20me2 in part through disruption of a salt bridge. Moreover, TIP60 deficiency impaired homologous recombination and conferred sensitivity to PARP (poly(ADP-ribose) polymerase) inhibition in a 53BP1-dependent manner. Cancer cells with BRCA deficiencies survive with only one DNA repair mechanism. When the PARP1 protein is inhibited, that second repair mechanism is also inhibited, DNA repair is drastically reduced, and the cell dies.
"The story did not fall into place the way we thought it would," said senior author Dr. Roger A. Greenberg, associate professor of cancer biology at the University of Pennsylvania. "We did not realize that it was a combination of two epigenetic marks that drives the repair system. However, we were able to show that 53BP1 does not bind well to regions of histone H4 that are acetylated at a specific location on H4. We think there will be further complexity to this regulation, creating the possibility for the discovery of additional mechanisms that regulate DNA repair pathways and response to therapy and potential new targets for diagnosis and therapy."
"If you could inhibit specific acetylation events, then a patient's response to PARP inhibitors might be enhanced by hyperactivating 53BP1 binding to breaks in the context of BRCA1 deficient cancers," said Dr. Greenberg. "What is more, measuring the levels of acetylation at H4 might predict how responsive an individual is to PARP inhibitors."
Related Links:
University of Pennsylvania
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







