LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Antibody-Based Method Detects SARS-CoV-2 Without Blood Sample

By LabMedica International staff writers
Posted on 04 Jul 2022
Print article
Image: New antibody detection method for coronavirus that does not require blood sample (Photo courtesy of University of Tokyo)
Image: New antibody detection method for coronavirus that does not require blood sample (Photo courtesy of University of Tokyo)

Despite significant and stunning advances in vaccine technology, the COVID-19 global pandemic is not over. A key challenge in limiting the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identifying infected individuals. The ineffective identification of SARS-CoV-2-infected individuals has severely limited the global response to the COVID-19 pandemic, and the high rate of asymptomatic infections (16-38%) has exacerbated this situation. The predominant detection method to date collects samples by swabbing the nose and throat. However, the application of this method is limited by its long detection time (4-6 hours), high cost, and requirement for specialized equipment and medical personnel, particularly in resource-limited countries. Now, investigators have developed a new antibody-based method for the rapid and reliable detection of SARS-CoV-2 that does not require a blood sample.

An alternative and complementary method for the confirmation of COVID-19 infection involves the detection of SARS-CoV-2-specific antibodies. Testing strips based on gold nanoparticles are currently in widespread use for point-of-care testing in many countries. They produce sensitive and reliable results within 10-20 minutes, but they require blood samples collected via a finger prick using a lancing device. This is painful and increases the risk of infection or cross-contamination, and the used kit components present a potential biohazard risk. In order to avoid these drawbacks, researchers at the Institute of Industrial Science at the University of Tokyo (Tokyo, Japan) explored the idea of sampling and testing the interstitial fluid (ISF), which is located in the epidermis and dermis layers of human skin.

"To develop a minimally invasive detection assay that would avoid these drawbacks, we explored the idea of sampling and testing the interstitial fluid (ISF), which is located in the epidermis and dermis layers of human skin," explained Leilei Bao, lead author of the study. "Although the antibody levels in the ISF are approximately 15-25% of those in blood, it was still feasible that anti-SARS-CoV-2 IgM/IgG antibodies could be detected and that ISF could act as a direct substitute for blood sampling."

After demonstrating that ISF could be suitable for antibody detection, the researchers developed an innovative approach to both sample and test the ISF. "First, we developed biodegradable porous microneedles made of polylactic acid that draws up the ISF from human skin," said Beomjoon Kim, senior author of the study. "Then, we constructed a paper-based immunoassay biosensor for the detection of SARS-CoV-2-specific antibodies." By integrating these two elements, the researchers created a compact patch capable of on-site detection of the antibodies within three minutes (result from in vitro tests).

The novel detection device has great potential for the rapid screening of COVID-19 and many other infectious diseases that is safe and acceptable to patients. It holds promise for use in many countries regardless of their wealth, which is a key aim for the global management of infectious disease.

Related Links:
Institute of Industrial Science 

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.