New Study Identifies Impact of Sample Processing on Sensitivity of Rapid Antigen Detection Tests for SARS-CoV-2
By LabMedica International staff writers Posted on 07 Dec 2021 |

A new study aimed at identifying the impact of sample processing on the sensitivity of rapid antigen detection (RAD) tests for SARS-CoV-2 has shown that selecting the appropriate inactivation methods and viral transport media (VTM) solutions is necessary during reagent development, performance evaluation, and clinical application.
The study published by the Chinese Medical Association (Beijing, China) explored the effect of different inactivation methods, VTM solutions, and sample preservation on the sensitivity of four RAD kits based on two SARS-CoV-2 strains. According to the results, heat inactivation may not be a suitable inactivation method for SARS-CoV-2 testing, especially for clinical testing and performance evaluation. This finding was consistent with a previous study reporting that heat inactivation harmed the efficiency of RT-PCR assay for SARS-CoV-2. Heat inactivation could be one of the possible factors of false-negative results in the RT-PCR assay of SARS-CoV-2 detection. Heat inactivation destroys the structure of the RNA and protein of SARS-CoV-2. RT-PCR assay can detect the nucleotide of SARS-CoV-2, while the RAD test can detect the antigen of SARS-CoV-2. Thus, heat inactivation could substantially affect the sensitivity of RAD kits.
Chemical inactivators might contribute a lot in protecting the laboratory personnel in charge of detecting SARS-CoV-2, especially nucleic acid detection because chemical inactivation can inactivate clinical samples containing SARS-CoV-2. Similarly, there might be some chemicals existing in VTMs that can denature and inactivate protein, thus affecting the performance of RAD kits. The VTM solution's impact on the RAD kits might be mainly conferred by the detection antibodies used in the kits, which utilize different epitopes to recognize the antigens in other kits. During sample inactivation, the VTM solution might change the tertiary structure of the antigen in the sample and cause it to degrade. Thus, the recognition between antigen and detection antibodies in the following detection process might greatly vary. Therefore, the reaction of different reagents to the same VTM was different, indicating that choosing the appropriate VTM solutions for RAD testing is necessary.
Additionally, the results showed that, along with the extension of preservation time and the increase of freeze–thaw cycles, the detection value of RAD kits slightly decreased, but most of them were still in the range of detection. A previous study had shown that the copy number of the DNA target decreased after 10 freeze-thaw cycles, which affected the performance of the droplet digital PCR. Also, there was no access to HIV viral load testing when the whole blood was stored in EDTA tubes or plasma preparation tubes for more than 6 h at 25 °C. Therefore, reasonable storage temperature and preservation time of samples are essential measures to ensure the accuracy of test results.
Thus, the study revealed that different virus inactivation methods and VTM solutions significantly impact the sensitivity of RAD kits. Therefore, it is necessary to select the appropriate inactivation methods and VTM solutions. Furthermore, as most RAD kits remain stable under different storage conditions, it is not required to consider the samples' preservation conditions. According to the results, during reagent development, performance evaluation, and clinical application, samples should not be treated by heat inactivation or unqualified VTM solutions before evaluating the performance of clinical samples, such as the lowest detection limitation. Moreover, samples should not be treated by heat inactivation or unqualified VTM solutions in clinical trials. In addition, attention should also be given to the warnings of the approved reagents, such as sample collection and preservation. To sum up, selecting VTM solutions might be more convenient, as they can effectively crack and inactivate viruses without affecting antigen testing.
Related Links:
Chinese Medical Association
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more