LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Serum Amyloid A Levels Linked to Likelihood of Developing Severe COVID-19

By LabMedica International staff writers
Posted on 26 Apr 2021
Print article
Image: This illustration reveals ultrastructural morphology exhibited by the coronavirus that causes COVID-19. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)
Image: This illustration reveals ultrastructural morphology exhibited by the coronavirus that causes COVID-19. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)
Results of research papers published during the current pandemic suggest that increased levels of the blood biomarker serum amyloid A predict development of severe or fatal forms of COVID-19.

Serum amyloid A (SAA) proteins are a family of apolipoproteins associated with high-density lipoprotein (HDL) in plasma. Acute-phase serum amyloid A proteins (A-SAAs) are secreted during the acute phase of inflammation. A-SAA genes and proteins are significantly activated during the acute phase response, which comprises a number of phenomena that occur in the presence of inflammation and infection, e.g., increased temperature and hormonal and metabolic alterations.

Circulating SAA concentrations, typically low under physiological circumstances, can increase up to 1000-fold within the first 24 to 48 hours of an acute phase response. This is the consequence of increased synthesis in the liver that is triggered by several stimuli, including tumor necrosis factor (TNF), interleukin (IL)-1beta, IL-6, and interferon gamma (IFN-gamma). SAA, in turn, can activate the complement system and further increase the synthesis of TNF, IL-1beta, and IL-6, and activate other proinflammatory cytokines such as IL-1alpha and IL-23.

Two systematic reviews and meta-analyses on a relatively limited number of studies, had reported a significant and positive association between SAA concentrations and COVID-19 severity. Thus, it was plausible that the acute increase in SAA concentrations in patients with COVID-19 might not only reflect the presence of an acute phase response, but also herald the development of a cytokine storm and, consequently, multi-organ failure and an increased risk of adverse outcomes.

In this light, investigators at Flinders University (Adelaide, Australia) and the University of Sassari (Italy) analyzed results from nineteen published studies involving 5617 COVID-19 patients to determine if a link could be demonstrated between SAA levels and COVID-19.

The investigators reported that pooled results indicated that SAA concentrations were significantly higher in patients with severe disease and non-survivors than in patients with mild disease or controls. SAA concentrations were significantly and positively associated with higher COVID-19 severity and mortality.

"Our analyses showed that COVID-19 patients with severe disease or who eventually died had significantly higher levels of SAA when compared to patients with mild COVID-19," said senior author Dr. Arduino Mangon, professor of clinical pharmacology at Flinders University. Patients with severe forms of coronavirus disease 2019 have excessive inflammation, alterations in clot formation, and significant damage in several organs, particularly the lung, the kidney, the heart, and the liver. This chemical [SAA] may help, together with other patient characteristics, in predicting which COVID-19 patients are likely to deteriorate and require aggressive management."

The serum amyloid A study was published in the March 15, 2021, online edition of the International Journal of Infectious Diseases.

Related Links:
Flinders University
University of Sassari


Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.