Serum Amyloid A Levels Linked to Likelihood of Developing Severe COVID-19
|
By LabMedica International staff writers Posted on 26 Apr 2021 |
![Image: This illustration reveals ultrastructural morphology exhibited by the coronavirus that causes COVID-19. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion (Photo courtesy of [U.S.] Centers for Disease Control and Prevention) Image: This illustration reveals ultrastructural morphology exhibited by the coronavirus that causes COVID-19. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2021-04-26/GMS-030B.jpg)
Image: This illustration reveals ultrastructural morphology exhibited by the coronavirus that causes COVID-19. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)
Results of research papers published during the current pandemic suggest that increased levels of the blood biomarker serum amyloid A predict development of severe or fatal forms of COVID-19.
Serum amyloid A (SAA) proteins are a family of apolipoproteins associated with high-density lipoprotein (HDL) in plasma. Acute-phase serum amyloid A proteins (A-SAAs) are secreted during the acute phase of inflammation. A-SAA genes and proteins are significantly activated during the acute phase response, which comprises a number of phenomena that occur in the presence of inflammation and infection, e.g., increased temperature and hormonal and metabolic alterations.
Circulating SAA concentrations, typically low under physiological circumstances, can increase up to 1000-fold within the first 24 to 48 hours of an acute phase response. This is the consequence of increased synthesis in the liver that is triggered by several stimuli, including tumor necrosis factor (TNF), interleukin (IL)-1beta, IL-6, and interferon gamma (IFN-gamma). SAA, in turn, can activate the complement system and further increase the synthesis of TNF, IL-1beta, and IL-6, and activate other proinflammatory cytokines such as IL-1alpha and IL-23.
Two systematic reviews and meta-analyses on a relatively limited number of studies, had reported a significant and positive association between SAA concentrations and COVID-19 severity. Thus, it was plausible that the acute increase in SAA concentrations in patients with COVID-19 might not only reflect the presence of an acute phase response, but also herald the development of a cytokine storm and, consequently, multi-organ failure and an increased risk of adverse outcomes.
In this light, investigators at Flinders University (Adelaide, Australia) and the University of Sassari (Italy) analyzed results from nineteen published studies involving 5617 COVID-19 patients to determine if a link could be demonstrated between SAA levels and COVID-19.
The investigators reported that pooled results indicated that SAA concentrations were significantly higher in patients with severe disease and non-survivors than in patients with mild disease or controls. SAA concentrations were significantly and positively associated with higher COVID-19 severity and mortality.
"Our analyses showed that COVID-19 patients with severe disease or who eventually died had significantly higher levels of SAA when compared to patients with mild COVID-19," said senior author Dr. Arduino Mangon, professor of clinical pharmacology at Flinders University. Patients with severe forms of coronavirus disease 2019 have excessive inflammation, alterations in clot formation, and significant damage in several organs, particularly the lung, the kidney, the heart, and the liver. This chemical [SAA] may help, together with other patient characteristics, in predicting which COVID-19 patients are likely to deteriorate and require aggressive management."
The serum amyloid A study was published in the March 15, 2021, online edition of the International Journal of Infectious Diseases.
Related Links:
Flinders University
University of Sassari
Serum amyloid A (SAA) proteins are a family of apolipoproteins associated with high-density lipoprotein (HDL) in plasma. Acute-phase serum amyloid A proteins (A-SAAs) are secreted during the acute phase of inflammation. A-SAA genes and proteins are significantly activated during the acute phase response, which comprises a number of phenomena that occur in the presence of inflammation and infection, e.g., increased temperature and hormonal and metabolic alterations.
Circulating SAA concentrations, typically low under physiological circumstances, can increase up to 1000-fold within the first 24 to 48 hours of an acute phase response. This is the consequence of increased synthesis in the liver that is triggered by several stimuli, including tumor necrosis factor (TNF), interleukin (IL)-1beta, IL-6, and interferon gamma (IFN-gamma). SAA, in turn, can activate the complement system and further increase the synthesis of TNF, IL-1beta, and IL-6, and activate other proinflammatory cytokines such as IL-1alpha and IL-23.
Two systematic reviews and meta-analyses on a relatively limited number of studies, had reported a significant and positive association between SAA concentrations and COVID-19 severity. Thus, it was plausible that the acute increase in SAA concentrations in patients with COVID-19 might not only reflect the presence of an acute phase response, but also herald the development of a cytokine storm and, consequently, multi-organ failure and an increased risk of adverse outcomes.
In this light, investigators at Flinders University (Adelaide, Australia) and the University of Sassari (Italy) analyzed results from nineteen published studies involving 5617 COVID-19 patients to determine if a link could be demonstrated between SAA levels and COVID-19.
The investigators reported that pooled results indicated that SAA concentrations were significantly higher in patients with severe disease and non-survivors than in patients with mild disease or controls. SAA concentrations were significantly and positively associated with higher COVID-19 severity and mortality.
"Our analyses showed that COVID-19 patients with severe disease or who eventually died had significantly higher levels of SAA when compared to patients with mild COVID-19," said senior author Dr. Arduino Mangon, professor of clinical pharmacology at Flinders University. Patients with severe forms of coronavirus disease 2019 have excessive inflammation, alterations in clot formation, and significant damage in several organs, particularly the lung, the kidney, the heart, and the liver. This chemical [SAA] may help, together with other patient characteristics, in predicting which COVID-19 patients are likely to deteriorate and require aggressive management."
The serum amyloid A study was published in the March 15, 2021, online edition of the International Journal of Infectious Diseases.
Related Links:
Flinders University
University of Sassari
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more








