We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

MicroRNA Regulation Critical for Development of Pediatric Brain Tumors

By Gerald M. Slutzky, PhD
Posted on 14 Dec 2016
Print article
Image: The nCounter system offers a simple, cost-effective way to simultaneously profile hundreds of mRNAs, microRNAs, or DNA targets (Photo courtesy of NanoString).
Image: The nCounter system offers a simple, cost-effective way to simultaneously profile hundreds of mRNAs, microRNAs, or DNA targets (Photo courtesy of NanoString).
Cancer researchers have uncovered the critical role played by microRNA regulation in the development of childhood brain tumors.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Low-grade gliomas and glioneuronal tumors represent the most frequent primary tumors of the central nervous system in children. Unlike many other types of cancerous tumors, these low-grade pediatric gliomas appear to have few genetic mutations, so the molecular basis for their development has been unclear.

Investigators at Johns Hopkins University (Baltimore, MD, USA) chose to examine a possible role for miRNAs in the development of pediatric gliomas, since miRNAs had been identified as molecular regulators of protein expression/translation that could repress multiple mRNAs concurrently through base pairing, and had an important role in other cancers.

The investigators used the NanoString (Seattle, WA, USA) digital counting system to analyze the expression levels of 800 microRNAs in nine low-grade glial and glioneuronal tumor types.

They reported in the October 14, 2016, online edition of the journal Modern Pathology that a set of 61 microRNAs were differentially expressed in tumors compared with normal brain tissues, and several showed levels varying by tumor type. MicroRNAs miR-4488 and miR-1246 were overexpressed in dysembryoplastic neuroepithelial tumors compared with brain tissue and other tumors, while miR-487b was variably under-expressed in pediatric glioma lines compared with human neural stem cells.

The investigators employed lentiviral vectors to overexpress miR-487b in a pediatric glioma cell line. These modified cells were found to be less cancer-like, forming 30% fewer colonies and had decreased levels of some proteins, such as Nestin (neuroectodermal stem cell marker). Nestin is known to be important in both early development and in cancers.

Senior author Dr. Fausto J.Rodriguez, associate professor of pathology at Johns Hopkins University, said, "Physicians might be able to look at the levels of this and other microRNAs in blood or cerebrospinal fluid to test for the presence of cancer. Researchers might also be able to target microRNAs directly, altering their levels to make cancer cells less likely to form tumors. By gaining a better understanding of the fine genetic differences between cancers and healthy tissues, we can develop better therapeutic or prognostic strategies."

Related Links:
Johns Hopkins University
NanoString
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Clinical Chemistry

view channel
Image: The study demonstrated that electric-field molecular fingerprinting can probe cancer (Photo courtesy of ACS Central Science, 2025, 10.1021/acscentsci.4c02164)

New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma

Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read more

Molecular Diagnostics

view channel
Image: The test monitors blood levels of DNA fragments released by dying tumor cells (Photo courtesy of 123RF)

Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer

Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.