New Metagenomics Analysis Tool Reduces False Discovery Rates
By LabMedica International staff writers Posted on 30 Mar 2015 |
![Image: Many molecular biology studies begin with purified DNA and RNA extracted from complex environments such as the human gut (Photo courtesy of Los Alamos [US] National Laboratory). Image: Many molecular biology studies begin with purified DNA and RNA extracted from complex environments such as the human gut (Photo courtesy of Los Alamos [US] National Laboratory).](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2015-03-30/GMS-085.jpg)
Image: Many molecular biology studies begin with purified DNA and RNA extracted from complex environments such as the human gut (Photo courtesy of Los Alamos [US] National Laboratory).
Genomic researchers recently described a novel new tool for analyzing the complex data generated during DNA screens of mixed populations of organisms such as the human gut microbiome.
DNA screening of entire communities of organisms has been termed metagenomics. Such screening generates an enormous data set of short sequences, or "reads," which must be evaluated in order to yield meaningful information. While existing microbial community profiling methods have attempted to rapidly classify the millions of reads output from modern DNA sequencing platforms, the combination of incomplete databases, similarity among otherwise divergent genomes, errors and biases in sequencing technologies, and the large volumes of sequencing data required for metagenome sequencing has led to unacceptably high false discovery rates (FDR).
To correct these problems, investigators at the Los Alamos National Laboratory (New Mexico, USA) developed a new method for analysis of DNA sequencing data. The new tool, described in the March 12, 2015, online edition of the journal Nucleic Acids Research, is called Genomic Origins through Taxonomic CHAllenge or GOTTCHA, which makes use of a database of reference genomes that have been preprocessed to retain only unique segments of the genomes at any level of taxonomy.
GOTTCHA analyzes the distribution and depth of coverage of only the unique fraction of each reference genome—the unique genome—to identify the true community composition and accurate relative abundance of members of the community. GOTTCHA uses empirically-derived coverage limits, supported by machine-learning approaches, to set the limits of detection. The result is a scalable, all-purpose, metagenomic community profiler with superior classification and statistical performance over all currently available tools.
"We have developed a new tool in this rapidly expanding and evolving field of what is called metagenomics," said senior author Dr. Patrick Chain, metagenomics team leader at the Los Alamos National Laboratory. "It uses nucleic acid data and looks for sections that map uniquely to a preconstructed database."
"Metagenomics is the study of entire microbial communities using genomics, such as when you sequence the DNA of a whole community of organisms at once," said Dr. Chain. "The result is an enormous data set of short sequences, or reads, that you need to sort through to try to understand which organisms are actually present, and what they may be doing. Here at Los Alamos, we specialize in incredibly large data sets; we know how to handle them whether it is for physics, ocean, or climate modeling, or for complex biological insights."
The GOTTCHA software, associated databases, and training datasets are accessible to biotech researchers online (please see Related Links below).
Related Links:
Los Alamos [US] National Laboratory
GOTTCHA
DNA screening of entire communities of organisms has been termed metagenomics. Such screening generates an enormous data set of short sequences, or "reads," which must be evaluated in order to yield meaningful information. While existing microbial community profiling methods have attempted to rapidly classify the millions of reads output from modern DNA sequencing platforms, the combination of incomplete databases, similarity among otherwise divergent genomes, errors and biases in sequencing technologies, and the large volumes of sequencing data required for metagenome sequencing has led to unacceptably high false discovery rates (FDR).
To correct these problems, investigators at the Los Alamos National Laboratory (New Mexico, USA) developed a new method for analysis of DNA sequencing data. The new tool, described in the March 12, 2015, online edition of the journal Nucleic Acids Research, is called Genomic Origins through Taxonomic CHAllenge or GOTTCHA, which makes use of a database of reference genomes that have been preprocessed to retain only unique segments of the genomes at any level of taxonomy.
GOTTCHA analyzes the distribution and depth of coverage of only the unique fraction of each reference genome—the unique genome—to identify the true community composition and accurate relative abundance of members of the community. GOTTCHA uses empirically-derived coverage limits, supported by machine-learning approaches, to set the limits of detection. The result is a scalable, all-purpose, metagenomic community profiler with superior classification and statistical performance over all currently available tools.
"We have developed a new tool in this rapidly expanding and evolving field of what is called metagenomics," said senior author Dr. Patrick Chain, metagenomics team leader at the Los Alamos National Laboratory. "It uses nucleic acid data and looks for sections that map uniquely to a preconstructed database."
"Metagenomics is the study of entire microbial communities using genomics, such as when you sequence the DNA of a whole community of organisms at once," said Dr. Chain. "The result is an enormous data set of short sequences, or reads, that you need to sort through to try to understand which organisms are actually present, and what they may be doing. Here at Los Alamos, we specialize in incredibly large data sets; we know how to handle them whether it is for physics, ocean, or climate modeling, or for complex biological insights."
The GOTTCHA software, associated databases, and training datasets are accessible to biotech researchers online (please see Related Links below).
Related Links:
Los Alamos [US] National Laboratory
GOTTCHA
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
HIV diagnostic methods have traditionally relied on detecting HIV-specific antibodies, which typically appear weeks after infection. This delayed detection has hindered early diagnosis, complicating patient... Read more
Blood Test Rules Out Future Dementia Risk
Previous studies have suggested that specific biomarkers, such as tau217, Neurofilament Light (NfL), and Glial Fibrillary Acidic Protein (GFAP), may be valuable for early dementia diagnosis.... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more