AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
By LabMedica International staff writers Posted on 05 May 2025 |

Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints. These sarcomas are classified into different subtypes based on several factors, including the tissue of origin and various molecular characteristics. Accurately classifying a patient’s sarcoma subtype is crucial as it helps guide treatment decisions and optimize outcomes. Unfortunately, due to the heterogeneity of sarcomas, classification can be extremely challenging. This often requires complex molecular and genetic testing, along with external review by highly specialized pathologists who rely on pattern recognition skills developed over years of training. Such resources are not always available in many healthcare settings. Now, findings of a study presented at the American Association for Cancer Research (AACR) Annual Meeting 2025 have shown that an artificial intelligence (AI)-based model can accurately classify pediatric sarcomas using only digital pathology images.
In their study, researchers at UConn Health (Farmington, CT, USA) and their collaborators explored the potential of AI to identify pediatric sarcoma subtypes with high precision. They used 691 digital images of pathology slides from various collaborators, representing nine distinct sarcoma subtypes, to train AI algorithms to detect patterns specific to each subtype. By digitizing tissue pathology slides, the researchers were able to convert the visual information a pathologist typically examines into numerical data that a computer can process. Much like how smartphones can identify a person’s face in photos and organize them into albums, the AI models learned to recognize tumor morphology patterns in the digitized slides and categorize them into diagnostic groups linked to specific sarcoma subtypes. To ensure consistency, the researchers developed and applied open-source software to harmonize images collected from different institutions, accounting for differences in format, staining, magnification, and other variables. The harmonized images were then broken into small tiles, which were analyzed using deep learning models that extracted numerical data for further evaluation using a novel statistical method.
This statistical method generated feature summaries for each slide, which were then assessed by the trained AI algorithms to assign the slides to specific subtypes. In validation experiments, the AI models successfully identified sarcoma subtypes with high accuracy. Specifically, the models distinguished between Ewing sarcoma and other sarcoma types in 92.2% of cases, non-rhabdomyosarcoma soft tissue sarcomas and rhabdomyosarcoma soft tissue sarcomas in 93.8% of cases, alveolar rhabdomyosarcoma and embryonal rhabdomyosarcoma in 95.1% of cases, and alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma, and spindle cell rhabdomyosarcoma in 87.3% of cases. A limitation of the study was the relatively small number of available pathology images for training the AI algorithms. However, the researchers pointed out that, given the rarity of pediatric sarcomas, their imaging dataset is likely the largest multicenter collection of pediatric sarcomas to date, encompassing a wide range of subtypes, anatomical locations, and patient demographics.
“Our findings demonstrate that AI-based models can accurately diagnose various subtypes of pediatric sarcoma using only routine pathology images. This AI-driven model could help provide more pediatric patients access to quick, streamlined, and highly accurate cancer diagnoses regardless of their geographic location or health care setting,” said Adam Thiesen, an MD/PhD candidate at UConn Health. “Our models are built in such a way that new images can be added and trained with minimal computational equipment,” he added. “After the standard data processing, clinicians could theoretically use our models on their own laptops, which could vastly increase accessibility even in under-resourced settings.”
Related Links:
UConn Health
Latest Pathology News
- AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
- AI-Based Model Predicts Kidney Cancer Therapy Response
- Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
- World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
- Breakthrough Diagnostic Approach to Significantly Improve TB Detection
- Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
Channels
Clinical Chemistry
view channel
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreMolecular Diagnostics
view channel
Liquid Biopsy Assay Detects Recurrence in CRC Patients Prior to Imaging
The detection of circulating tumor DNA (ctDNA) after treatment is a strong indicator of recurrence in colorectal cancer (CRC), but it often goes undetected due to the low traces of ctDNA present in the blood.... Read more
Ultra Fast Synovial Fluid Test Diagnoses Osteoarthritis and Rheumatoid Arthritis In 10 Minutes
Studies indicate that more than 50% of individuals aged 65 and older experience symptoms of osteoarthritis, while rheumatoid arthritis is a serious chronic condition affecting approximately 1 in 100 people... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more