World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
By LabMedica International staff writers Posted on 25 Apr 2025 |

Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or Tumor-Node-Metastasis (TNM) cancer staging system, which helps determine the stage of cancer, and (2) the American Thyroid Association (ATA) risk classification system, which is used to categorize cancer risk. These systems are vital for predicting patient survival and guiding treatment decisions. However, manually integrating the complex clinical data into these systems can be time-consuming and inefficient. Now, researchers have introduced the world’s first artificial intelligence (AI) model capable of classifying both the stage and risk category of thyroid cancer with remarkable accuracy, exceeding 90%. This innovative AI model, featured in the journal npj Digital Medicine, is set to significantly reduce pre-consultation preparation time for frontline clinicians by approximately 50%.
An interdisciplinary research team from the LKS Faculty of Medicine at the University of Hong Kong (HKUMed, Hong Kong) developed an AI assistant that employs large language models (LLMs) such as ChatGPT and DeepSeek. These models are designed to understand and process human language, helping to analyze clinical documents and improve the accuracy and efficiency of thyroid cancer staging and risk classification. The model utilizes four offline, open-source LLMs—Mistral (Mistral AI), Llama (Meta), Gemma (Google), and Qwen (Alibaba)—to interpret free-text clinical documents. The AI model was trained using an open-access data set from the United States that included pathology reports from 50 thyroid cancer patients from The Cancer Genome Atlas Program (TCGA), with validation done using pathology reports from 289 TCGA patients and 35 pseudo cases created by endocrine surgeons.
By combining the outputs from all four LLMs, the research team was able to enhance the overall performance of the AI model, achieving an accuracy rate ranging from 88.5% to 100% in ATA risk classification and 92.9% to 98.1% in AJCC cancer staging. In addition to its high accuracy in extracting and analyzing complex information from pathology reports, operation records, and clinical notes, the AI model also drastically reduces doctors’ preparation time by nearly half compared to manual interpretation. A significant advantage of this model is its ability to operate offline, allowing it to be deployed locally without the need to share or upload sensitive patient data, thereby ensuring maximum patient privacy. The AI model’s versatility means it can be easily integrated into a variety of healthcare settings, both public and private, as well as in international healthcare and research institutions.
“In line with government’s strong advocacy of AI adoption in healthcare, as exemplified by the recent launch of LLM-based medical report writing system in the Hospital Authority, our next step is to evaluate the performance of this AI assistant with a large amount of real-world patient data,” said Dr. Carlos Wong, Honorary Associate Professor in the Department of Family Medicine and Primary Care, School of Clinical Medicine, HKUMed. “Once validated, the AI model can be readily deployed in real clinical settings and hospitals to help clinicians improve operational and treatment efficiency.”
Related Links:
HKUMed
Latest Pathology News
- Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
- Breakthrough Diagnostic Approach to Significantly Improve TB Detection
- Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
Neutrophils, once believed to be uniform in nature, have been discovered to exhibit significant diversity. These immune cells, which play a crucial role in fighting infections, are also implicated in autoimmune... Read more
First-of-its-Kind Blood Test Detects Trauma-Related Diseases
In today’s fast-paced world, stress and trauma have unfortunately become common experiences for many individuals. Continuous exposure to stress hormones can confuse the immune system, causing it to misinterpret... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more