We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Laser-Based Method to Accelerate Cancer Diagnosis

By LabMedica International staff writers
Posted on 02 Apr 2025
Print article
Image: The new method can help accelerate the diagnosis of oncological diseases (Photo courtesy of Vilnius University)
Image: The new method can help accelerate the diagnosis of oncological diseases (Photo courtesy of Vilnius University)

Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published in Scientific Reports, describes how to quickly and accurately analyze the structure of collagen in tissue.

Scientists from the Faculty of Physics and the Life Sciences Center at Vilnius University (Vilnius, Lithuania), in collaboration with others, explain that this method, known as Double Stokes polarimetry, relies on how collagen responds to laser light that is polarized in different ways. By measuring the polarization, the method reveals the ultrastructural parameters of collagen, which detail its molecular structure. This allows for the evaluation of changes in collagen structure that occur during various diseases.

Similar approaches have already been applied to study tissues from breast and lung cancer, among other cancers, as well as conditions like keratoconus. These changes in collagen structure are closely linked to disease progression and symptoms. A key benefit of this method is its speed, which is several hundred times faster than other comparable techniques. This makes it particularly suitable for use in clinical settings. The research team plans to continue exploring this method and will apply it to analyze both cancerous tissue and samples from other diseases.

"This work can significantly contribute to the development of oncological and histopathological diagnostics," said Prof. Dr. Virginijus Barzda. “We hope that this method will allow physicians to more effectively detect subtle tissue changes. Collagen is the most common protein in the human body, so investigation of its structure would allow for more accurate disease diagnostics.”

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Sekisui Diagnostics UK Ltd.