Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
By LabMedica International staff writers Posted on 06 Mar 2025 |

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where it originates. However, in some instances, DCIS progresses into invasive breast cancer, which can become life-threatening. Despite years of research, determining which cases require aggressive treatment and which can be safely monitored has remained difficult. Clinical decisions about treatment usually depend on the size and grade of the DCIS lesion, but these factors do not always reliably predict the behavior of the cancer. Identifying a better way to predict which cases are likely to become more aggressive could significantly enhance treatment strategies. Now, researchers have discovered a potential method for predicting the likelihood of cancer spreading by assessing the "stickiness" of tumor cells. This breakthrough, made possible by a specially designed microfluidic device, could help doctors identify high-risk patients and tailor their treatment plans more effectively.
The innovative device, developed by scientists at the University of California San Diego (La Jolla, CA, USA), works by pushing tumor cells through fluid-filled chambers and sorting them based on how well they adhere to the walls of the chambers. In tests with tumor cells collected from patients with various stages of breast cancer, the researchers identified a distinct pattern: cells from patients with more aggressive cancers were less sticky (weakly adherent), while cells from patients with less aggressive cancers were more sticky (strongly adherent). The team’s previous research had already shown that cancer cells with weak adhesion are more likely to migrate and invade surrounding tissues, compared to cells with stronger adhesion. By testing this concept on patient tumor samples, the team advanced their work, demonstrating that the adhesion strength of tumor cells varies and that this characteristic might help predict whether a patient’s cancer will spread.
The device, about the size of an index card, consists of microfluidic chambers that are coated with adhesive proteins found in breast tissue, like fibronectin. When tumor cells are introduced into the chambers, they adhere to the fibronectin coating. The cells are then subjected to increasing shear stress as fluid flows through the chambers. By observing where cells detach under specific stress levels, the researchers categorize them as weakly or strongly adherent. In their most recent study, the team used this device to examine cell adhesion in DCIS samples. The device was tested in an investigator-initiated trial with samples from 16 patients, including normal breast tissue, DCIS tumors, and aggressive breast cancer tumors from patients with invasive ductal and lobular carcinomas. The results, published in Cell Reports, revealed that aggressive breast cancer samples contained weakly adherent cells, while normal breast tissue samples contained strongly adherent cells. DCIS samples showed intermediate levels of adhesion, but there was significant variability across patients. Moving forward, the team plans to monitor DCIS patients over the next five years to assess whether adhesion strength correlates with metastatic progression. If their hypothesis proves correct, this device could provide oncologists with a powerful tool to inform treatment decisions, potentially recommending more aggressive treatments for patients with tumors showing weak cell adhesion.
“Right now, we don’t have a reliable way to identify which DCIS patients are at risk of developing more aggressive breast cancer. Our device could change that,” said study senior author Adam Engler, a professor in the Shu Chien-Gene Lay Department of Bioengineering at the UC San Diego Jacobs School of Engineering. “Our hope is that this device will allow us to prospectively identify those at highest risk, so that we can intervene before metastasis occurs.”
Latest Pathology News
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
- Butterfly Wings-Inspired Imaging Technique Enables Faster Cancer Diagnosis
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
HIV diagnostic methods have traditionally relied on detecting HIV-specific antibodies, which typically appear weeks after infection. This delayed detection has hindered early diagnosis, complicating patient... Read more
Blood Test Rules Out Future Dementia Risk
Previous studies have suggested that specific biomarkers, such as tau217, Neurofilament Light (NfL), and Glial Fibrillary Acidic Protein (GFAP), may be valuable for early dementia diagnosis.... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read more
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read moreTechnology
view channel
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics
With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more