Butterfly Wings-Inspired Imaging Technique Enables Faster Cancer Diagnosis
By LabMedica International staff writers Posted on 24 Feb 2025 |

Fibrosis, which refers to the accumulation of fibrous tissue, is a significant characteristic of various diseases, including neurodegenerative conditions, heart disease, and cancer. In oncology, determining the extent of fibrosis in a biopsy can help assess whether a cancer is in its early or advanced stages. However, distinguishing between these stages using current clinical methods is a significant challenge. These methods typically involve staining tissues to highlight key structures in a tumor biopsy, but the results can be subjective—interpretations may vary between pathologists. While more advanced imaging techniques can provide more detailed insights, they often require expensive, specialized equipment that is not available in many clinics. Now, researchers have discovered an unexpected ally in the effort to make cancer diagnosis faster, more accurate, and more accessible worldwide: the Morpho butterfly.
Renowned for its vibrant blue wings, the Morpho butterfly’s brilliance is not due to pigments but to microscopic structures that manipulate light. Researchers at the University of California San Diego (La Jolla, CA, USA) are utilizing these same microstructures to gain detailed insights into the fibrous composition of cancer biopsy samples—without the need for chemical stains or costly imaging systems. In a study published in Advanced Materials, the team demonstrated that by placing a biopsy sample atop a Morpho butterfly wing and observing it under a standard microscope, they could determine whether the tumor’s structure suggests early- or late-stage cancer—without relying on staining or expensive imaging devices. The micro- and nanostructures of the wing interact strongly with polarized light, a type of light that moves in a specific direction. Collagen fibers, which are a vital component of fibrotic tissue, also respond to polarized light, though their signals are weak. By positioning a biopsy sample over a section of a Morpho butterfly wing, the researchers amplified these weak signals, making it easier to examine the density and arrangement of collagen fibers.
The amplified signals can then be interpreted to quantify the density and organization of the collagen fibers in the sample. To achieve this, the researchers developed a mathematical model based on Jones calculus, a technique used to analyze polarized light. The model correlates the intensity of the light with the density and structure of collagen fibers, providing a measurable indicator of fibrosis in the tissue. The researchers applied this method to analyze both collagen-dense and collagen-sparse human breast cancer biopsy samples. Their findings were comparable to conventional staining techniques and a high-cost advanced imaging method. Importantly, this technique can be performed with standard optical microscopes that are already available in most clinics. Additionally, it is more objective and quantitative than existing methods. Although this study focused on breast cancer, the researchers believe this approach could be extended to other fibrotic diseases as well.
“Essentially, we’re trying to expand on these procedures with a stain-free alternative that requires nothing more than a standard optical microscope and a piece of a Morpho wing,” said Paula Kirya, a mechanical engineering graduate student at UC San Diego and the study’s first author. “In many parts of the world, early cancer screening is a challenge because of resource limitations. If we can provide a simpler and more accessible tool, we can help more patients get diagnosed before their cancers reach aggressive stages.”
Latest Pathology News
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
- Machine Learning Tool Enables AI-Assisted Diagnosis of Immunological Diseases
- AI-Driven Tool to Accelerate Cancer Diagnosis
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Approximately one in three women aged 14-49 in the United States will experience bacterial vaginosis (BV), a vaginal bacterial imbalance, at some point in their lives. Around 50% of BV cases do not present... Read more
Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
Hepatitis B, an inflammation of the liver caused by the hepatitis B virus (HBV), is the second-leading infectious cause of death globally, following tuberculosis. This viral infection can result in serious... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more