AI-Driven Tool to Accelerate Cancer Diagnosis
By LabMedica International staff writers Posted on 18 Feb 2025 |

In order to address the challenge of low visibility when examining cell samples under a microscope, medical professionals typically use staining and labeling techniques. However, this process is not only time-consuming but also costly. As a result, patients often face delays in receiving the results of their cell analysis, such as blood sample tests. Another significant issue is the "batch effect," which refers to technical variations across different experimental batches and conditions, such as changes in instrument settings or image acquisition protocols. These variations can hinder the accurate biological interpretation of cell morphology. Existing solutions, including machine learning-based approaches, often rely on specific prior knowledge or assumptions about the data, making them less adaptable and harder to implement in diverse applications. Researchers have now developed an AI-driven imaging tool that enables faster and more accurate diagnosis of cancer patients, significantly improving the effectiveness of their treatment.
In collaboration with other institutions, researchers from the University of Hong Kong (HKU, Hong Kong) successfully demonstrated their latest generative AI method, Cyto-Morphology Adversarial Distillation (CytoMAD), on lung cancer patients and drug tests. Combined with their proprietary microfluidic technology, CytoMAD facilitates fast, cost-effective, "label-free" imaging of human cells. This innovation enables clinicians to assess tumors at the precision of individual cells and determine if the patient is at risk for metastasis. Published in the journal Advanced Science, the study highlights how CytoMAD uses AI to automatically correct inconsistencies in cell imaging, enhance cell images, and extract previously undetectable details. This comprehensive capability of CytoMAD ensures reliable and accurate data analysis and diagnosis. The technology holds the potential to revolutionize cell imaging, providing critical insights into cell properties and related health and disease information.
A significant advantage of this AI technology is its label-free nature, which simplifies the preparation of patient or cell samples. This reduces time and labor, enhancing the speed and efficiency of diagnosis and drug discovery. CytoMAD also enables simultaneous label-free image contrast translation, revealing additional cellular details. Moreover, this novel approach addresses the issue of the "batch effect." The deep-learning model is supported by ultra-fast optical imaging technology, developed by the same research team. While lung cancer remains one of the most lethal cancers globally and a top cancer risk, CytoMAD’s utility is not limited to lung cancer patients. The technology could streamline drug screening processes, thanks to the time-saving "label-free" method, alongside its advantages in high-speed imaging and diagnostic capabilities powered by generative AI. Looking ahead, a key goal is to further train the model to help medical practitioners predict cancer and other diseases in potential patients.
“A classical bright-field cell image typically looks like a vague photo full of scattered fainted blobs – nowhere close to informative for meaningful analysis of the cell properties and thus the related health and disease information,” said Dr. Michelle Lo, the main developer of CytoMAD in this project. “Nevertheless, CytoMAD, as generative AI model, can be trained to extract the information related to mechanical properties and molecular information of cells that was undetectable to the human eye in a brightfield image. In other words, we could uncover important properties of cells that underpin cell functions, bypassing the use of standard fluorescence markers and their limitations in costs and time.”
Latest Pathology News
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
- Butterfly Wings-Inspired Imaging Technique Enables Faster Cancer Diagnosis
- Machine Learning Tool Enables AI-Assisted Diagnosis of Immunological Diseases
- Revolutionary AI Tool Transforms Disease Visualization
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
Hepatitis B, an inflammation of the liver caused by the hepatitis B virus (HBV), is the second-leading infectious cause of death globally, following tuberculosis. This viral infection can result in serious... Read more
Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of kidney cancer, making up approximately 90% of cases. Each year, around 400,000 individuals are diagnosed with ccRCC globally.... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channelInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read moreTechnology
view channel
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more