We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Electronic Diagnostic Model Predicts Acute Interstitial Nephritis in Patients

By LabMedica International staff writers
Posted on 15 Nov 2024
Print article
Image: The study used a new electronic diagnostic model as an alternative to kidney biopsies to predict AIN (Photo courtesy of 123RF)
Image: The study used a new electronic diagnostic model as an alternative to kidney biopsies to predict AIN (Photo courtesy of 123RF)

Acute interstitial nephritis (AIN) is a frequent cause of acute kidney injury (AKI), characterized by inflammation and swelling of certain kidney tissues. It is typically associated with the use of medications such as steroids, proton pump inhibitors, and antibiotics. Studies show that AKI, which involves a sudden decline in kidney function, affects about 20% of hospitalized patients. One of the key challenges in managing AKI is distinguishing AIN from other causes of kidney injury. This is complicated by the fact that over 90% of AIN patients show no obvious symptoms, and common diagnostic methods, including urine eosinophil counts, urine microscopy, and imaging tests, have poor accuracy. Misdiagnosing AIN can result in the premature discontinuation of essential treatments like immune checkpoint inhibitors or antibiotics, potentially leading to permanent kidney damage if the condition is not promptly identified. Given the difficulty of diagnosing AIN, a kidney biopsy is often required, though it is an invasive procedure with its own risks. To address this challenge, researchers have developed a diagnostic model using lab tests from electronic medical records, which could significantly improve early detection of AIN in patients.

In the study, researchers from Johns Hopkins Medicine (Baltimore, MD, USA) and Yale University (New Haven, CT, USA) developed a diagnostic model to predict AIN in patients using a machine learning technique called least absolute shrinkage and selection operator (LASSO). The laboratory tests used in the model included serum creatinine, blood urea nitrogen (BUN), urine protein levels, and urine specific gravity (the density of urine compared to water). The study involved two patient cohorts, both of which had previously undergone kidney biopsies at Johns Hopkins Hospital (JHH) or Yale University. The JHH cohort consisted of 1,454 patients who had a native kidney biopsy between January 2019 and December 2022, while the Yale cohort included 528 patients scheduled for clinical kidney biopsy between July 2020 and June 2023. Patients who did not have a serum creatinine value within a year before their biopsy, were undergoing kidney allograft biopsies, or had known vasculitis or lupus nephritis were excluded from the study.

A total of 1,982 patients were analyzed, with 22% diagnosed with AIN. The study found that patients with AIN were more likely to be hospitalized and had higher serum creatinine levels and a higher blood urea nitrogen-to-creatinine ratio. The diagnostic model improved the accuracy of AIN diagnosis to 77%. However, there were differences in the prevalence of AIN between the two cohorts. After adjusting for prevalence at the individual centers, the model's calibration improved significantly, leading to more accurate diagnoses. The findings, published in the Journal of the American Society of Nephrology, suggest that this diagnostic model could assist clinicians in determining whether a kidney biopsy is necessary in patients with AKI and help guide treatment decisions for AIN. The formula for predicting AIN is available on MDCalc.

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.