LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Unique Metabolic Signature Could Enable Sepsis Diagnosis within One Hour of Blood Collection

By LabMedica International staff writers
Posted on 15 Apr 2024
Image: Dr. Sam Lodge found that metabolic signatures can shift the speed of sepsis diagnosis (Photo courtesy of Murdoch University)
Image: Dr. Sam Lodge found that metabolic signatures can shift the speed of sepsis diagnosis (Photo courtesy of Murdoch University)

Sepsis is a life-threatening condition triggered by an extreme response of the body to an infection. It requires immediate medical intervention to prevent potential death or lasting damage. Delay in diagnosing patients with sepsis or septic shock is linked with heightened mortality and morbidity, emphasizing the critical need for prompt diagnosis to improve survival rates. Now, new research findings promise faster diagnosis and better outcomes for sepsis and septic shock patients.

In the study led by Murdoch University (Perth, Australia), researchers successfully used blood plasma metabolic phenotyping to accurately diagnose sepsis or septic shock within an hour of collecting blood samples. This method marks a significant improvement over traditional pathogen culturing techniques, which may take days to yield results. According to the researchers, metabolic signatures were the key to the breakthrough. The study involved the analysis of blood plasma samples collected from 152 patients admitted to the Intensive Care Unit (ICU) within 48 hours—comprising 62 without sepsis, 71 with sepsis, and 19 with septic shock.

The metabolic profiling revealed that patients with sepsis or septic shock displayed higher levels of neopterin and lower levels of HDL cholesterol and phospholipid particles compared to those without sepsis. Septic shock patients could be differentiated from those with only sepsis through different concentrations of 10 specific lipids, including notably reduced levels of five phosphatidylcholine species, three cholesterol esters, one dihydroceramide, and one phosphatidylethanolamine. Utilizing these 15 parameters, which include various metabolites, lipids, lipoproteins, and inflammatory markers, the study achieved high accuracy in accurately classifying patients into their respective clinical outcomes. The research underscores the potential of plasma metabolic phenotyping within 48 hours of ICU admission as a dependable tool for diagnosing sepsis and differentiating between sepsis and septic shock based on lipid profiles.

“As well as impacting individuals and families, sepsis and septic shock pose a significant economic burden to our society,” said Dr. Sam Lodge, from Murdoch University’s Australian National Phenome Centre. “While further validation with a larger cohort is required, this study provides a proof of concept for the potential use of metabolic phenotypes in better diagnosing these conditions.”

Related Links:
Murdoch University

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more