We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Algorithm Detects and Identifies Novel Bacterial Organisms

By LabMedica International staff writers
Posted on 19 Jan 2024
Print article
Image: The reliable identification of cultivated germs is essential in clinical bacteriology (Photo courtesy of University Hospital Basel)
Image: The reliable identification of cultivated germs is essential in clinical bacteriology (Photo courtesy of University Hospital Basel)

Hospitals frequently encounter unknown germs, and identifying these pathogens is crucial for efficient bacterial infection treatment. Typically, medical laboratory analysis can identify these pathogens, but standard methods sometimes fall short, especially when dealing with unclassified bacterial species or those difficult to cultivate. Since 2014, a dedicated research team has been collecting and analyzing patient samples containing such elusive germs, leading to the discovery of over 30 new bacteria species, some linked to significant clinical infections.

The team at the University of Basel (Basel, Switzerland) examined a total of 61 unidentified bacterial pathogens from various patient blood and tissue samples. These pathogens had previously eluded identification by conventional lab techniques like mass spectroscopy or partial bacterial genome sequencing. The researchers then employed a more recent method to sequence the complete genetic material of these bacteria. By comparing the genomes with known strains using an online tool, they identified 35 previously unknown bacteria out of the 61 samples. The remaining 26 strains were classified as difficult to identify. These strains either had their genome sequences recently added to databases or had only recently received accurate taxonomic descriptions. Upon reviewing patient data, they found that seven of the 35 new strains had clinical relevance, indicating their potential to cause bacterial infections in humans. Most of these newly identified species belong to the Corynebacterium and Schaalia genera, gram-positive bacilli typically part of the natural human skin microbiome and mucosa. Although often overlooked and understudied, these species can lead to infections when they enter the bloodstream, such as through a tumor.

One particularly challenging pathogen and potentially clinically significant was identified in a patient's inflamed thumb following a dog bite. This finding led the Basel team to consider it an emerging pathogen requiring close monitoring. Similarly, a Canadian research group isolated this bacterium from wounds inflicted by dog or cat bites, naming it Vandammella animalimorsus in 2022. The Basel team is also planning to name their new species, with two already named: Pseudoclavibacter triregionum, referring to Basel's location near Switzerland, France, and Germany's borders. The project is ongoing, with the team at the University Hospital Basel continuing to collect and sequence unknown pathogens from patient samples. They have already identified over 20 additional new species. This ongoing research is crucial for the future of medical diagnostics, as it will enable more accurate diagnoses and effective treatment of infections caused by rare pathogens right from the start.

“Such direct links between newly identified species of bacteria and their clinical relevance have rarely been published in the past,” said microbiologist Dr. Daniel Goldenberger who led the team. “We have noticed a major dynamic here: thanks to technological advances in bacteriology, much more is being published about newly discovered species of bacteria.”

Related Links:
University of Basel

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.