LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Synergistic Platform Accurately Detects Viruses at Lowest of Concentrations

By LabMedica International staff writers
Posted on 23 Oct 2023
Image: The deep learning-based biosensing platform can count viral particles better (Photo courtesy of GIST)
Image: The deep learning-based biosensing platform can count viral particles better (Photo courtesy of GIST)

Rapid and on-site methods for detecting and quantifying viruses are crucial for both treating infected individuals and controlling the spread of the disease. The COVID-19 crisis has underscored the need for dependable, yet easily accessible tests that eliminate the complicated and lengthy procedures associated with traditional lab-based diagnostics. Bright-field microscopic imaging is a commonly used point-of-care technology for quantifying viral loads. However, the tiny size and low refractive index of viruses and similar bioparticles can make accurate detection challenging, and increase the lowest detectable concentration of viral load. While Gires-Tournois (GT) biosensors—nanophotonic resonators—have shown promise in detecting small virus particles, their utilization has been limited by issues like visual artifacts and non-reproducibility.

In a recent breakthrough, an international team of researchers, led by the Gwangju Institute of Science and Technology (GIST, Gwangju, Korea) turned to artificial intelligence (AI) to resolve this issue. They introduced a combined biosensing technology named "DeepGT." This technology combines the strengths of GT biosensors with deep learning algorithms to accurately quantify nanoscale bioparticles, such as viruses, without the need for complex sample preparation. Specifically, the team engineered a GT biosensor with a three-layer thin film design and treated it so it could detect color changes when interacting with targeted materials. To confirm its capabilities, they simulated the interaction between host cells and a virus using particles designed to resemble the SARS-CoV-2 virus.

Further, the team trained a convolutional neural network (CNN) using more than a thousand optical and scanning electron micrographs of the GT biosensor surface with different types of nanoparticles. Their findings revealed that DeepGT was not only able to refine visual artifacts common to bright-field microscopy but also could glean essential details even when the viral concentration was as low as 138 pg ml–1. Additionally, the system calculated the number of bioparticles with significant accuracy, noted by a mean absolute error of just 2.37 across nearly 1,600 images, compared to a 13.47 error rate for traditional rule-based approaches—all within a second's time. The CNN-enhanced biosensing system could also gauge the seriousness of the infection, from asymptomatic cases to severe ones, based on the viral load. Thus, DeepGT offers a speedy and exact method for virus detection across a wide range of sizes without being restricted by the inherent limitations of visible light diffraction.

"We designed DeepGT to objectively assess the severity of an infection or disease. This means that we will no longer have to rely solely on subjective assessments for diagnosis and healthcare but will instead have a more accurate and data-driven approach to guide therapeutic strategies," said Professor Young Min Song from GIST. "Our approach provides a practical solution for the swift detection and management of emerging viral threats as well as the improvement of public health preparedness by potentially reducing the overall burden of costs associated with diagnostics."

Related Links:
GIST 

Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more