We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lateral Flow Test Detects Bacteria Causing Gingivitis and Cardiovascular Diseases

By LabMedica International staff writers
Posted on 20 Oct 2023
Print article
Image: The new test can warn consumers about periodontal disease which can lead to heart diseases (Photo courtesy of University of Cincinnati)
Image: The new test can warn consumers about periodontal disease which can lead to heart diseases (Photo courtesy of University of Cincinnati)

Gingivitis, the initial stage of gum disease, is caused by bacteria that can make their way into the bloodstream and result in cardiovascular disease as well as other serious health conditions. A newly designed device now provides an early warning system for tooth decay that may result from conditions like gingivitis and periodontitis.

In order to develop the gingivitis test, engineers at the University of Cincinnati (Cincinnati, OH, USA) faced the challenge of creating a device capable of identifying the specific bacteria responsible for gingivitis. The researchers, who have been exploring biosensing for various applications, are focusing on saliva for point-of-care (POC) tests. Saliva is an ideal substance for testing since it's easy to collect and plentiful. However, saliva is also a complex mixture containing elements like proteins, peptides, DNA, and other compounds, each potentially signaling different health conditions, which makes isolating a particular biomarker for analysis difficult.

To resolve this issue, researchers pretreated the sample using potato starch to remove a protein called amylase that could interfere with the test results. Their point-of-care lateral flow assay (LFA) device uses antibodies that react to the endotoxins found in the bacteria. The team will undertake further development to improve assay sensitivity using saliva samples and explore its ability to detect multiple lipopolysaccharides (LPS) molecules related to diseases for more accurate diagnostics of patients' health. Finally, because the sensitivity of the current antibody-based detection is significantly affected by the performance of the conjugate antibody, the researchers will work on developing aptamer-based sandwich lateral flow assay for improved flexibility and performance.

“It’s been quite the challenge to get to the point where we can detect this toxin created by the bacteria responsible for gingivitis,” said Andrew Steckl, an Ohio Eminent Scholar and distinguished research professor in UC’s College of Engineering and Applied Science. “There are good reasons to use saliva. It’s relatively plentiful and easy to obtain through noninvasive methods. And saliva has a lot of important elements that can act as indicators of your health.”

Related Links:
University of Cincinnati 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.