LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Digital Pathology Approach Helps Identify New NSCLC Biomarkers

By LabMedica International staff writers
Posted on 21 Jun 2023
Image: Researchers have identified new biomarkers of the most frequent lung cancer (Photo courtesy of Freepik)
Image: Researchers have identified new biomarkers of the most frequent lung cancer (Photo courtesy of Freepik)

Lung cancer is the leading cause of cancer-related deaths among both genders globally, with a five-year survival rate standing at a mere 18%. Non-small cell lung cancer (NSCLC), divided further into adenocarcinoma, squamous cell carcinoma, and a few rarer types, is the most common diagnosis for these patients. Emerging evidence underscores the critical role of the collagen fiber-rich microenvironment surrounding cancer cells in the growth of these cancers and other solid tumors. In this tumor context, high type I collagen expression is linked to poor prognosis and higher metastasis risk. This association suggests that fibrillar collagens could serve as a key source of cancer-relevant biomarkers and has sparked interest in deciphering their roles in tumor development.

In response to this challenge, researchers at the University of Barcelona (Barcelona, Spain) and the Institute of Bioengineering of Catalonia (IBEC, (Barcelona, Spain) have developed and validated a novel digital pathology approach that quantitatively analyzes collagen fibers in tissue samples from NSCLC patients. The approach utilizes digitized images of patient biopsies stained with a dye named picrosirius red (PSR) and imaged with polarized light. The researchers employed the open-source software CT-FIRE to automatically segment individual fibers in the images and quantify critical characteristics like length, width, or straightness.

The team applied this methodology to analyze 195 samples from patients with adenocarcinoma and squamous cell carcinoma. The findings suggest that fiber straightness could serve as a potential disease biomarker, while high density could indicate a poor prognosis. Interestingly, the prognostic relevance of collagen density appears independent of the clinical tumor stage, suggesting that collagen fiber analysis provides additional crucial information. The new methodology also enabled the comparison of collagen fibers in patient tissue samples with non-cancerous tissue samples. This allowed, for the first time, a quantitative description of the changes occurring in collagen organization in NSCLC. The findings indicate that tumor tissue samples showed an increase in straightness, length, and width, suggestive of abnormal tissue stiffening, especially in adenocarcinoma patients. According to the researchers, this stiffening could be related to various mechanisms that help the tumor evade the immune response, thereby potentially facilitating tumor progression in this type of cancer.

“Our new tool can improve the clinical management of surgical patients with this type of cancer, since it identifies those at an increased risk of relapse and, therefore, can benefit from a comprehensive monitoring and even neoadjuvant therapies (complementary to the main treatment)”, noted Jordi Alcaraz, lecturer at the Faculty of Medicine and Health Sciences of the UB and researcher at IBEC.

Related Links:
University of Barcelona 
IBEC 

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more