Novel Microscopy Technique Comes Closer to Use in Clinical Diagnostics
By LabMedica International staff writers Posted on 14 Mar 2023 |

Diagnostic imaging plays a crucial role in aiding physicians and researchers in understanding internal body structures, thus improving clinical analysis and medical intervention. Scientists continually explore new avenues to utilize imaging technologies to gain insight into human health. A pioneering imaging method called Brillouin microscopy enables the mapping of cell and tissue stiffness, often linked to early symptoms of ailments such as cancer and Alzheimer's. This method is distinct from conventional imaging modalities such as confocal fluorescence microscopy, as it allows label-free and non-contact acquisition of key mechanical information like viscosity and stiffness of biological specimens. Now, researchers are striving to refine Brillouin microscopy, which can answer many important questions in biophysics and mechanobiology.
Brillouin microscopy, an optical imaging method rooted in Brillouin light scattering (BLS), was first introduced by French physicist Léon Brillouin in 1922. When light interacts with a substance, thermal fluctuations or molecular vibrations within the material cause the light to scatter resulting in BLS. These vibrations can be influenced by various factors such as compression, water content, heat, or material stiffness. Among these factors, stiffness is incredibly valuable for the diagnostic application of Brillouin microscopy. Changes in cell stiffness, often linked to the progression of ailments like cancer metastasis, are challenging to measure since cells are microscopic and situated in very delicate tissues.
In conventional approaches, prepared cells are measured on a petri dish or other rigid substrates. However, Brillouin microscopy relies solely on a laser beam to investigate the mechanical properties, enabling measurement when cells are in their physiological conditions. As no physical interaction is required, Brillouin technology is less invasive and more convenient. The technology is important for understanding embryonic tissue development, particularly to gain a better understanding of birth-related diseases and disorders.
Researchers at Wayne State University (Detroit, MI, USA) examined the use of dual line-scanning Brillouin microscopy (dLSBM) to overcome two significant limitations - acquisition speed and irradiation doses - that hinder its widespread usage in biomedicine. The application of dLSBM yielded 50 to 100 times faster speeds than its counterpart, with a reduction of 80 times light irradiation levels for 2D and 3D mechanical mapping.
“With this innovation, we can acquire one mechanical image of cell clusters in a few minutes,” said Jitao Zhang, assistant professor of biomedical engineering (BME) at Wayne State University. “This improved acquisition speed is important because it allows us to investigate details of cell behaviors in almost real time.”
“Due to the 3D structure of an embryo, traditional contact-based techniques encounter big challenges for in vivo measurement,” added Zhang. “Since Brillouin microscopy works in a non-contact manner, it sometimes becomes the only available choice.”
Related Links:
Wayne State University
Latest Pathology News
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more