LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Model Accurately Shows Presence and Location of Cancer in Pathological Images

By LabMedica International staff writers
Posted on 15 Aug 2022
Image: AI model reduces cost and time and increasing accuracy of cancer diagnosis (Photo courtesy of Pexels)
Image: AI model reduces cost and time and increasing accuracy of cancer diagnosis (Photo courtesy of Pexels)

It is usually necessary to accurately mark the location of the cancer site in pathological images to solve the problems involved with zoning that indicates the location information of cancer, which takes a long time and therefore increased cost. Existing deep learning models need to construct a dataset, in which the location of the cancer was accurately drawn, to specify the cancer site. Now, researchers have developed a weakly supervised deep learning model that can accurately show the presence and location of cancer in pathological images based only on data where the cancer is present. The deep learning model improves efficiency and is expected to make a significant contribution to the relevant research field.

Scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, Korea) developed the weakly supervised learning model that zones cancer sites with only rough data such as 'whether the cancer in the image is present or not' is under active study. However, there would be a significant deterioration in performance if the existing weakly supervised learning model is applied to a huge pathological image dataset where the size of one image is as large as a few gigabytes. To solve this problem, the researchers attempted to improve performance by dividing the pathological image into patches, although the divided patches lose the correlation between the location information and each split data, which means that there is a limit to using all of the available information.

In response, the research team discovered a technique of segmenting down to the cancer site solely based on the learned data indicating the presence of cancer by slide. The team developed a pathological image compression technology that first teaches the network to effectively extract significant features from the patches through unsupervised contrastive learning and uses this to detect the main features while maintaining each location information to reduce the size of the image while maintaining the correlation between the patches. Later, the team developed a model that can find the regions that are highly likely to have cancer from the compressed pathology images by using a class activation map and zone all of these regions from the entire pathology images using a pixel correlation module (PCM). The newly developed deep learning model showed a dice similarity coefficient (DSC) score of up to 81-84 only with the learning data with slide-level cancer labels in the cancer zoning problem. It significantly exceeded the performance of previously proposed patch level methods or other weakly supervised learning techniques (DSC score: 20 - 70).

“The model developed through this study has greatly improved the performance of weakly supervised learning of pathological images, and it is expected to contribute to improving the efficiency of various studies requiring pathological image analysis,” said Professor Park Sang-Hyun of the Department of Robotics and Mechatronics Engineering at DGIST. “If we can improve the related technology further in the future, it will be possible to use it universally for various medical image zoning issues.”

Related Links:
DGIST 

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more