LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Pathology Lab on Wheels Can Revolutionize Brain Surgery

By LabMedica International staff writers
Posted on 27 May 2022
Image: A pathology lab on wheels aims to revolutionize brain surgery (Photo courtesy of NYU Langone)
Image: A pathology lab on wheels aims to revolutionize brain surgery (Photo courtesy of NYU Langone)

Guesswork defines a central challenge of brain surgery. Cut too little and the residual tumor cells will reboot and kill the patient. Cut too much and critical brain functions could be irreversibly damaged. Studies show that in up to three-quarters of patients with brain cancer, portions of the tumor that could be safely removed are left behind, simply because the surgeon cannot see them. Without visual certainty, the risk of removing precious healthy tissue that could be involved in speech, memory, movement, or virtually any other important function of the brain is simply too high to cut beyond the known boundaries. Now, a radically new kind of imaging system helps brain surgeons cut with more confidence.

The new imaging system, now employed at the Brain and Spine Tumor Center at NYU Langone’s Perlmutter Cancer Center NYU Langone (New York, NY, USA), is called stimulated Raman histology, or SRH, a method that distinguishes tumor regions, rich in protein and DNA, from normal lipid-rich brain tissue, creating contrasted images akin to conventional histology slides. The technology is based on an old technique, Raman spectroscopy, used in chemistry since the 1920s, that involves shining a laser beam at a sample. The unique vibrational properties of different molecules change the optical properties of the laser, helping to create an image of the sample’s structure.

Pathologists can just as readily distinguish between cancerous and healthy tissue using the SRH images made in the operating room compared to the conventional ones created in the lab. The system works in concert with a powerful new diagnostic technique that leverages AI to distinguish among tumor types in less than two minutes, compared to the 20 to 30 minutes it typically takes human pathologists. The speed of diagnosis is a game changer, eliminating the time that a patient remains on the operating table while surgeons await lab results - a dangerous gap that increases the odds of infection or complications. Housed in a metal box about the size of a mini-fridge and mounted on wheels, the technology, which is now available to all NYU Langone Health patients with brain tumors, can be rolled into any operating room to provide a surgeon with near real-time analysis of a tissue sample.

“If we have a patient with a tumor of unknown etiology, for example, we might not know whether it’s glioblastoma or lymphoma - two tumors with very different treatments. Making the distinction in the operating room is extremely important,” said Daniel A. Orringer, MD. “Surgical decision-making is like operating brake and gas pedals. We are taking the guesswork out of the picture by allowing the surgeon to interrogate the tissue on a microscopic level and use imaging data to inform surgical strategy.”

Related Links:
NYU Langone 

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Automated MALDI-TOF MS System
EXS 3000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more