We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Immunohistochemistry Biomarkers Used to Subtype Gastric Intestinal Metaplasia

By LabMedica International staff writers
Posted on 04 May 2022
Print article
Image: The Vectra 3 System for Quantitative Pathology Imaging (Photo courtesy of PerkinElmer)
Image: The Vectra 3 System for Quantitative Pathology Imaging (Photo courtesy of PerkinElmer)

Gastric cancer (GC) is the fifth most common and third most lethal cancer globally. Patients with GC are often asymptomatic, with presentation occurring at advanced stage, and a low 5-year survival rate in most countries. Intestinal metaplasia is considered a key pivot point in the Correa model of GC.

The Correa model describes histologically defined conditions initiated by Helicobacter pylori infection, from chronic gastritis (ChG) to atrophic gastritis, intestinal metaplasia (IM), dysplasia and finally to the intestinal type of GC. Successful H. pylori eradication treatment in the early stages of this cascade can reverse the process, but in a subset of IM patients, eradication does not prevent them from progressing to GC suggesting that IM is a key point in gastric carcinogenesis.

Gastroenterologists at the Royal Melbourne Hospital (Melbourne, Australia) and their colleagues selected CD10 and Das1 as candidate biomarkers to distinguish complete and incomplete IM glands in tissues from patients without GC (IM-GC) and patients with GC (IM + GC). H&E stained gastric IM tissue samples collected post-endoscopy/gastrectomy were subtyped at the time of collection by the in-house pathologist. Individual IM glands were subtyped as complete or incomplete with principal criteria being the presence of a brush border and gland morphology.

Immunohistochemistry (IHC) was performed on sequential 4 μm formalin-fixed, paraffin-embedded (FFPE) sections. Anti-CD10 staining was carried out using both single IHC and as part of a multiplex IHC panel. Multiplexed IHC stained sections were scanned and visualized on a VECTRA imaging system (Canfield Scientific, Parsippany, NJ, USA). Das1 staining was performed with overnight incubation of the primary antibody and slides were scanned on a VS120 slide scanner microscope and imaged using cellSens Dimension software (Olympus, Tokyo, Japan).

The scientists reported that across both cohorts CD10 stained the IM brush border and was shown to have a high sensitivity (87.5% and 94.9% in IM-GC and IM + GC patients respectively) and specificity (100.0% and 96.7% respectively). By contrast Das1 stained mainly goblet cells and the apical membrane of epithelial cells, mostly of incomplete IM glands with a low sensitivity (28.6% and 29.3% in IM-GC and IM + GC patients respectively) but high specificity (98.3% and 85.1% respectively). Whole tissue digital quantification of Das1 staining showed a significant association with incomplete IM compared to complete IM, both in IM-GC and in IM + GC patients. Additionally, complete IM in IM + GC patients exhibited significantly more Das1 staining than in IM-GC patients.

The authors concluded that overall CD10 was shown to be an outstanding biomarker for complete IM and Das1 was shown to have potential as an additional risk-associated biomarker when used in combination with digital imaging quantification. Their clinical use could lead to better patient stratification with improved targeted surveillance of IM patients, ultimately leading to prevention or early detection of GC. The study was published on April 21, 2022 in the journal BMC Gastroenterology.

Related Links:
The Royal Melbourne Hospital
Canfield Scientific
Olympus 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.