LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

FTIR-Based Saliva Test Detects Body’s Response to COVID-19

By LabMedica International staff writers
Posted on 11 Mar 2022
Image: Agilent Cary 630 FTIR spectrometer (Photo courtesy of Agilent Technologies Inc.)
Image: Agilent Cary 630 FTIR spectrometer (Photo courtesy of Agilent Technologies Inc.)

A potential new saliva test can rapidly detect COVID-19 infection and may even indicate if a person is likely to become seriously unwell by reading the chemical signature in a person’s saliva. The researchers found the test worked by detecting the body’s response to COVID-19 rather than just the virus itself – making it different from PCR and rapid antigen tests. In addition, the researchers also established a decontamination procedure that would allow infected samples to be safely handled and tested on the spot.

In a study, researchers at the QIMR Berghofer Medical Research Institute (Brisbane, Australia) collaborated with Agilent Technologies Inc. (Santa Clara, CA, USA) on a proof-of-concept FTIR-based saliva COVID-19 testing workflow using the Agilent Cary 630 FTIR Spectrometer. The study investigated the pathophysiological response to a COVID-19 infection through ATR-FTIR spectroscopy. The researchers acquired infrared spectra of saliva samples following a quick and simple sample preparation requiring only ethanol and basic laboratory equipment. An infrared spectrum can be considered as a biochemical snapshot of the saliva sample including a COVID-19 immune response signature. Unlike other testing technologies such as PCR testing or rapid antigen test, the ATR-FTIR method analyses the pathophysiological responses of the human body rather than detecting the pathogen/antigen itself, which is thought to make this method more robust against virus mutations.

“We applied a simple ethanol decontamination procedure for biosafe handling of self-collected saliva samples. A basic step of significant importance for any test that has the potential to be used in non-clinical environments such as in remote areas or in scenarios where large crowds require rapid testing, for example, in airports, or sports stadiums,” explained associate professor Michelle Hill, head of QIMR Berghofer’s Precision and Systems Biomedicine Research Group, and one of the lead scientists of the study.

“Earlier research studies on ATR-FTIR for COVID-19 saliva testing were not conclusive on the biological basis for the saliva testing methodology. To shine a light on this aspect, we also conducted controlled infection experiments on cells and mice models and established the most characteristic COVID-19 positive spectral signature. We integrated our data from in vitro cell studies, in vivo mouse studies, and independent human cohort studies, as well as data from recent publications to demonstrate the robustness of the methodology,” Hill added.

“We are very excited about this research study. FTIR spectroscopy is an easy-to-use analytical technique, uses minimal consumables, and provides results in seconds,” said Andrew Hind, associate vice president of Research and Development for the Molecular Spectroscopy Division at Agilent. “It emphasizes the potential of ATR-FTIR spectroscopy for life science and infectious disease research. Agilent funded parts of this research work through the Agilent Technologies Applications and Core Technology - University Research Grant and provided the Cary 630 FTIR Spectrometer. We will continue to support work in the field of COVID-19 and infectious diseases research.”

Related Links:
QIMR Berghofer Medical Research Institute 
Agilent Technologies Inc.

Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
GLOBE SCIENTIFIC, LLC