LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Melanoma Test Offers Reassurance of Low Risk of Cancer Spread

By LabMedica International staff writers
Posted on 25 Jan 2022
Print article
Image: The High Capacity RNA-to-cDNA Kit is a streamlined reverse transcription kit designed for optimum performance with TaqMan Gene Expression Master Mix, Power SYBR Green PCR Master Mix, and other PCR enzymes (Photo courtesy of Thermo Fisher Scientific)
Image: The High Capacity RNA-to-cDNA Kit is a streamlined reverse transcription kit designed for optimum performance with TaqMan Gene Expression Master Mix, Power SYBR Green PCR Master Mix, and other PCR enzymes (Photo courtesy of Thermo Fisher Scientific)
Cutaneous melanoma is an aggressive form of skin cancer with an increasing worldwide incidence, particularly in the younger population. Although treatment for patients with metastatic melanoma has improved remarkably in the last decade, principally with targeted therapies and immune checkpoint modulators, there are still no consistently beneficial treatments for patients with metastatic disease.

AMBRA1 is a scaffold protein with key roles in autophagy, cell survival and proliferation. AMBRA1 promotes autophagy through initiation of autophagosome formation, and mitophagy-mediated clearance of damaged mitochondria. Melanoma cells can influence the tumor microenvironment through secretion of growth factors, including transforming growth factors α and β (TGF-α, TGF-β).

Clinical Scientists at Newcastle University (Newcastle, UK) and AMLo Biosciences Limited (Newcastle upon Tyne, UK) and their colleagues evaluated the potential contribution of melanoma paracrine transforming growth factor (TGF)-β signaling to the loss of AMBRA1 in the epidermis overlying the primary tumor and disruption of epidermal integrity. Immunohistochemistry was used to analyze AMBRA1 and TGF-β2 in a cohort of 109 AJCC all-stage melanomas, and TGF-β2 and claudin-1 in a cohort of 30 or 42 AJCC stage I melanomas, respectively, with known AMBRA1 and loricrin (AMLo) expression. Evidence of pre-ulceration was analyzed in a cohort of 42 melanomas, with TGF-β2 signaling evaluated in primary keratinocytes.

The investigators performed semiquantitative immunohistochemistry for or AMBRA1, TGF-β2, TGF-β3, claudin-1 or AMLo expression. Claudin-1 expression was quantified by H-score using Aperio ImageScope (Leica Biosystems, Nussloch Germany). Western blotting was generated and visualized using enhanced chemiluminescence (Bio-Rad, Watford, UK). Total RNA was isolated from cell pellets and reverse transcribed using an AMV Reverse Transcriptase kit (Promega, Madison, WI, USA) or High Capacity Reverse Transcription Kit (Thermo Fisher Scientific, Waltham MA, USA).

The scientists reported that increased tumoral TGF-β2 was significantly associated with loss of peritumoral AMBRA1, ulceration, AMLo high-risk status and metastasis. TGF-β2 treatment of keratinocytes resulted in downregulation of AMBRA1, loricrin and claudin-1, while knockdown of AMBRA1 was associated with decreased expression of claudin-1 and increased proliferation of keratinocytes. Importantly, they showed loss of AMBRA1 in the peritumoral epidermis was associated with decreased claudin-1 expression, parakeratosis and cleft formation in the dermoepidermal junction.

Penny E. Lovat, PhD, Professor of Cellular Dermatology and senior author of the study, said, “Like mortar and bricks holding together a wall, AMBRA1, Loricrin and Claudin 1 are all proteins key to maintaining the integrity of the upper layer of the skin. When these proteins are lost gaps develop, like the mortar crumbling away in the wall. This allows the tumor to spread and ultimately ulcerate which we know is a process associated with higher risk tumors. Our new understanding of this biological mechanism underpins the test we have available.”

The authors concluded that their data suggested a paracrine mechanism whereby melanoma secretion of TGF-β2 causes peritumoral loss of AMBRA1 and reduced epidermal integrity facilitating erosion of the epidermis and tumor ulceration. Targeting TGF-β2 signaling may therefore represent a novel adjuvant treatment strategy for high-risk early-stage tumors with loss of epidermal AMBRA1. The study was published on January 13, 2022 in the British Journal of Dermatology.

Related Links:
Newcastle University
AMLo Biosciences Limited
Leica Biosystems
Bio-Rad
Promega
Thermo Fisher Scientific


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.