Melanoma Test Offers Reassurance of Low Risk of Cancer Spread
By LabMedica International staff writers Posted on 25 Jan 2022 |

Image: The High Capacity RNA-to-cDNA Kit is a streamlined reverse transcription kit designed for optimum performance with TaqMan Gene Expression Master Mix, Power SYBR Green PCR Master Mix, and other PCR enzymes (Photo courtesy of Thermo Fisher Scientific)
Cutaneous melanoma is an aggressive form of skin cancer with an increasing worldwide incidence, particularly in the younger population. Although treatment for patients with metastatic melanoma has improved remarkably in the last decade, principally with targeted therapies and immune checkpoint modulators, there are still no consistently beneficial treatments for patients with metastatic disease.
AMBRA1 is a scaffold protein with key roles in autophagy, cell survival and proliferation. AMBRA1 promotes autophagy through initiation of autophagosome formation, and mitophagy-mediated clearance of damaged mitochondria. Melanoma cells can influence the tumor microenvironment through secretion of growth factors, including transforming growth factors α and β (TGF-α, TGF-β).
Clinical Scientists at Newcastle University (Newcastle, UK) and AMLo Biosciences Limited (Newcastle upon Tyne, UK) and their colleagues evaluated the potential contribution of melanoma paracrine transforming growth factor (TGF)-β signaling to the loss of AMBRA1 in the epidermis overlying the primary tumor and disruption of epidermal integrity. Immunohistochemistry was used to analyze AMBRA1 and TGF-β2 in a cohort of 109 AJCC all-stage melanomas, and TGF-β2 and claudin-1 in a cohort of 30 or 42 AJCC stage I melanomas, respectively, with known AMBRA1 and loricrin (AMLo) expression. Evidence of pre-ulceration was analyzed in a cohort of 42 melanomas, with TGF-β2 signaling evaluated in primary keratinocytes.
The investigators performed semiquantitative immunohistochemistry for or AMBRA1, TGF-β2, TGF-β3, claudin-1 or AMLo expression. Claudin-1 expression was quantified by H-score using Aperio ImageScope (Leica Biosystems, Nussloch Germany). Western blotting was generated and visualized using enhanced chemiluminescence (Bio-Rad, Watford, UK). Total RNA was isolated from cell pellets and reverse transcribed using an AMV Reverse Transcriptase kit (Promega, Madison, WI, USA) or High Capacity Reverse Transcription Kit (Thermo Fisher Scientific, Waltham MA, USA).
The scientists reported that increased tumoral TGF-β2 was significantly associated with loss of peritumoral AMBRA1, ulceration, AMLo high-risk status and metastasis. TGF-β2 treatment of keratinocytes resulted in downregulation of AMBRA1, loricrin and claudin-1, while knockdown of AMBRA1 was associated with decreased expression of claudin-1 and increased proliferation of keratinocytes. Importantly, they showed loss of AMBRA1 in the peritumoral epidermis was associated with decreased claudin-1 expression, parakeratosis and cleft formation in the dermoepidermal junction.
Penny E. Lovat, PhD, Professor of Cellular Dermatology and senior author of the study, said, “Like mortar and bricks holding together a wall, AMBRA1, Loricrin and Claudin 1 are all proteins key to maintaining the integrity of the upper layer of the skin. When these proteins are lost gaps develop, like the mortar crumbling away in the wall. This allows the tumor to spread and ultimately ulcerate which we know is a process associated with higher risk tumors. Our new understanding of this biological mechanism underpins the test we have available.”
The authors concluded that their data suggested a paracrine mechanism whereby melanoma secretion of TGF-β2 causes peritumoral loss of AMBRA1 and reduced epidermal integrity facilitating erosion of the epidermis and tumor ulceration. Targeting TGF-β2 signaling may therefore represent a novel adjuvant treatment strategy for high-risk early-stage tumors with loss of epidermal AMBRA1. The study was published on January 13, 2022 in the British Journal of Dermatology.
Related Links:
Newcastle University
AMLo Biosciences Limited
Leica Biosystems
Bio-Rad
Promega
Thermo Fisher Scientific
AMBRA1 is a scaffold protein with key roles in autophagy, cell survival and proliferation. AMBRA1 promotes autophagy through initiation of autophagosome formation, and mitophagy-mediated clearance of damaged mitochondria. Melanoma cells can influence the tumor microenvironment through secretion of growth factors, including transforming growth factors α and β (TGF-α, TGF-β).
Clinical Scientists at Newcastle University (Newcastle, UK) and AMLo Biosciences Limited (Newcastle upon Tyne, UK) and their colleagues evaluated the potential contribution of melanoma paracrine transforming growth factor (TGF)-β signaling to the loss of AMBRA1 in the epidermis overlying the primary tumor and disruption of epidermal integrity. Immunohistochemistry was used to analyze AMBRA1 and TGF-β2 in a cohort of 109 AJCC all-stage melanomas, and TGF-β2 and claudin-1 in a cohort of 30 or 42 AJCC stage I melanomas, respectively, with known AMBRA1 and loricrin (AMLo) expression. Evidence of pre-ulceration was analyzed in a cohort of 42 melanomas, with TGF-β2 signaling evaluated in primary keratinocytes.
The investigators performed semiquantitative immunohistochemistry for or AMBRA1, TGF-β2, TGF-β3, claudin-1 or AMLo expression. Claudin-1 expression was quantified by H-score using Aperio ImageScope (Leica Biosystems, Nussloch Germany). Western blotting was generated and visualized using enhanced chemiluminescence (Bio-Rad, Watford, UK). Total RNA was isolated from cell pellets and reverse transcribed using an AMV Reverse Transcriptase kit (Promega, Madison, WI, USA) or High Capacity Reverse Transcription Kit (Thermo Fisher Scientific, Waltham MA, USA).
The scientists reported that increased tumoral TGF-β2 was significantly associated with loss of peritumoral AMBRA1, ulceration, AMLo high-risk status and metastasis. TGF-β2 treatment of keratinocytes resulted in downregulation of AMBRA1, loricrin and claudin-1, while knockdown of AMBRA1 was associated with decreased expression of claudin-1 and increased proliferation of keratinocytes. Importantly, they showed loss of AMBRA1 in the peritumoral epidermis was associated with decreased claudin-1 expression, parakeratosis and cleft formation in the dermoepidermal junction.
Penny E. Lovat, PhD, Professor of Cellular Dermatology and senior author of the study, said, “Like mortar and bricks holding together a wall, AMBRA1, Loricrin and Claudin 1 are all proteins key to maintaining the integrity of the upper layer of the skin. When these proteins are lost gaps develop, like the mortar crumbling away in the wall. This allows the tumor to spread and ultimately ulcerate which we know is a process associated with higher risk tumors. Our new understanding of this biological mechanism underpins the test we have available.”
The authors concluded that their data suggested a paracrine mechanism whereby melanoma secretion of TGF-β2 causes peritumoral loss of AMBRA1 and reduced epidermal integrity facilitating erosion of the epidermis and tumor ulceration. Targeting TGF-β2 signaling may therefore represent a novel adjuvant treatment strategy for high-risk early-stage tumors with loss of epidermal AMBRA1. The study was published on January 13, 2022 in the British Journal of Dermatology.
Related Links:
Newcastle University
AMLo Biosciences Limited
Leica Biosystems
Bio-Rad
Promega
Thermo Fisher Scientific
Latest Pathology News
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more