LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Glycan-Based Flow-Through Device Detects SARS-COV-2 Using Sugars Rather Than Antibodies

By LabMedica International staff writers
Posted on 18 Oct 2021
Illustration
Illustration

Researchers have demonstrated a new technology to detect SARS-COV-2 using sugars rather than antibodies.

A collaborative study by the University of Warwick (Coventry, UK), Iceni Diagnostics Ltd. (Norwich, UK) and UHCW NHS Trust (Coventry and Warwickshire, UK) showed that glycans (sugars) can be used to detect COVID-19 infection from swab samples. The proof of concept demonstrated that next generation glycan-based rapid diagnostics can be deployed in real world situations.

Lateral flow diagnostics (LFDs) have been widely used during the COVID-19 pandemic to provide rapid identification of people with an active infection. These LFDs work by using antibodies, which ‘stick’ to the SARS-COV-2 virus. The research team at the University of Warwick have been working with Iceni Diagnostics to develop an alternative system of detection using glycans, where synthetic polymer chains are used to attach the glycans to the surface of nanoparticles. Viruses commonly use glycans as a ‘handle’ to attach to our cells, with the team mimicking this process to enable detection of SARS-COV-2.

Working with UHCW NHS Trust, the team demonstrated that prototype devices could identify COVID-19 positive swabs across a range of viral loads. The team also showed that the technology functioned well with the spike proteins from variants of concern, which is a key benefit of using glycan-binding technology. This work clearly demonstrates that glycan-recognition technology can be used to identify pathogens, which the academic/industry team are actively developing further as part of a collaborative project.

“This work shows the potential of using glycans as alternative detection reagents, compared to the traditional antibody-based techniques,” said Professor Matthew Gibson, Professor at Warwick Medical School and the Department of Chemistry at the University of Warwick. “Furthermore, the use of our polymeric linkers, which allows us to present the glycan on the nanoparticles (which make the red line), shows the benefit of true cross-disciplinary, cross-sector collaboration. This work shows that our approach can work with primary clinical samples and we are actively developing this into a real-world device with our partners.”

“This is a testament to the cutting-edge scientific research taking place at the University of Warwick and UHCW NHS Trust,” added Professor Dimitris Grammatopoulos, Professor at Warwick Medical School and Consultant in Clinical Biochemistry at UHCW NHS Trust. “Initial results of this prototype showed it can perform favorably in comparison to established COVID-19 tests with respect to cost, time, accuracy and reliability. We are delighted to collaborate on this research.”

“Our ambition was to exemplify how an academic and industry collaboration can translate hard-core scientific discoveries into practical solutions, and this study has proven we can do this by combining our deep experience in glycoscience,” concluded Professor Rob Field, Iceni Diagnostics’ Chief Scientific Officer. “The successful testing of the prototype device and glycan-based platform will now enable us to progress our viral and other pathogen pipelines, and we are delighted to continue working with the University of Warwick team on this program.”

Related Links:
University of Warwick 
Iceni Diagnostics Ltd. 
UHCW NHS Trust 

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more