New Sensor Uses `Glow-in-the-Dark` Signal to Indicate Presence of Molecules Associated with COVID-19 in Blood
By LabMedica International staff writers Posted on 29 Jul 2021 |

Image: New Sensor Uses `Glow-In-The-Dark` Signal to Indicate Presence of Molecules Associated with COVID-19 in Blood (Photo courtesy of Bas Rosier and Maarten Merkx (TU/e))
A new sensor with bioluminescent proteins indicates the presence of anti-drug antibodies and molecules associated with COVID-19 in the blood.
A research team at Eindhoven University of Technology (Eindhoven, Netherlands) and Utrecht University (Utrecht, the Netherlands) has developed a new type of sensor that combines the sensitivity and accuracy of current laboratory-based measurements with the speed and low-cost of current home tests. The new sensor uses a “glow-in-the-dark” signal to indicate the presence of tiny amounts proteins and anti-drug antibodies, as well as COVID-19 spike proteins and antibodies in blood.
Home test kits to check for COVID-19 spike proteins and anti-COVID-19 antibodies are fast and simple to use but lack the sensitivity and accuracy of laboratory tests. Another issue with these so-called point-of-use home tests is that they are not accurate enough. With all of this in mind, the research team developed a new test approach with the accuracy and sensitivity of current laboratory-based methods and the speed and low-cost of existing point-of-use tests. The key to detecting and indicating the presence of biomarkers or molecules of interest is bioluminescence, the process that organisms such as fireflies use to produce light. The researchers tested the new sensing approach on a variety of biomarkers, including one to detect bacterial and viral infections (C-reactive protein), using 40 patient samples.
The RAPPID testing platform is definitely rapid in nature, and with a suitable sample holder can be used in conjunction with a smartphone, meaning that it has the potential to be used by anyone, anywhere. However, some work still needs to be done before his new testing platform will become available to the wider public.
“Our new sensor is based on bioluminescence, which we have used extensively in our previous research. If a certain protein or antibody is present in the sample, special proteins called luciferase enzymes will emit light,” said Maarten Merkx from the institute for Complex Molecular Systems (ICMS) at TU/e and research lead for the new study. “In other words, we look for a ‘glow-in-the-dark’ response.”
“We envisage that this testing platform could be used for a broad range of applications such as in rapid screening and testing, for therapeutic antibody-drug monitoring associated with conditions like rheumatoid arthritis and inflammatory bowel disease, and for the rapid detection of infectious diseases that could be associated with future epidemics or pandemics,” added Merkx.
Related Links:
Eindhoven University of Technology
Utrecht University
A research team at Eindhoven University of Technology (Eindhoven, Netherlands) and Utrecht University (Utrecht, the Netherlands) has developed a new type of sensor that combines the sensitivity and accuracy of current laboratory-based measurements with the speed and low-cost of current home tests. The new sensor uses a “glow-in-the-dark” signal to indicate the presence of tiny amounts proteins and anti-drug antibodies, as well as COVID-19 spike proteins and antibodies in blood.
Home test kits to check for COVID-19 spike proteins and anti-COVID-19 antibodies are fast and simple to use but lack the sensitivity and accuracy of laboratory tests. Another issue with these so-called point-of-use home tests is that they are not accurate enough. With all of this in mind, the research team developed a new test approach with the accuracy and sensitivity of current laboratory-based methods and the speed and low-cost of existing point-of-use tests. The key to detecting and indicating the presence of biomarkers or molecules of interest is bioluminescence, the process that organisms such as fireflies use to produce light. The researchers tested the new sensing approach on a variety of biomarkers, including one to detect bacterial and viral infections (C-reactive protein), using 40 patient samples.
The RAPPID testing platform is definitely rapid in nature, and with a suitable sample holder can be used in conjunction with a smartphone, meaning that it has the potential to be used by anyone, anywhere. However, some work still needs to be done before his new testing platform will become available to the wider public.
“Our new sensor is based on bioluminescence, which we have used extensively in our previous research. If a certain protein or antibody is present in the sample, special proteins called luciferase enzymes will emit light,” said Maarten Merkx from the institute for Complex Molecular Systems (ICMS) at TU/e and research lead for the new study. “In other words, we look for a ‘glow-in-the-dark’ response.”
“We envisage that this testing platform could be used for a broad range of applications such as in rapid screening and testing, for therapeutic antibody-drug monitoring associated with conditions like rheumatoid arthritis and inflammatory bowel disease, and for the rapid detection of infectious diseases that could be associated with future epidemics or pandemics,” added Merkx.
Related Links:
Eindhoven University of Technology
Utrecht University
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more