Rare Genetic Variants Can Contribute to Ischemic Heart Failure
By LabMedica International staff writers Posted on 29 Dec 2020 |

Image: Illustration of Normal Heart versus Heart with Dilated Cardiomyopathy (Photo courtesy of Medical gallery of Blausen Medical).
Heart failure affects about 40 million people globally, and most cases are due to ischemic heart disease, hypertension, or cardiomyopathies. Cardiomyopathies have been traced to rare variants in genes that encode sarcomere or cytoskeletal proteins, channels, or desmosomes, while genome-wide association studies have underscored common variants linked to heart failure.
Mendelian genetic conditions may represent an important subset of complex late-onset diseases such as heart failure, irrespective of the clinical presentation. Sequencing studies have identified causal genetic variants for distinct subtypes of heart failure (HF) such as hypertrophic or dilated cardiomyopathy. However, the role of rare, high-impact variants in HF, for which ischemic heart disease is the leading cause, has not been systematically investigated.
Medical scientists at the Columbia University Medical Center (New York, NY, USA) and their international colleagues sequenced the exomes of 5,942 people with heart failure from the Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity (CHARM) and the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA) clinical trials. The mean age (± SD) was 68.9 ± 9.9 years and 4,213 (70.9%) were male. Most of the patients in the CORONA and CHARM trial had heart failure with reduced ejection fraction, though a portion of the CHARM study patients had heart failure with preserved ejection fraction. The studies included 13,156 unrelated controls.
The team reported that in their analysis of all heart failure subtypes, the TTN gene reached study wide significance, with the strongest association in a dominant protein truncation variant model. Protein truncation variants in TTN are a known cause of cardiomyopathy, particularly dilated cardiomyopathy. Most of the cardiomyopathy-associated variants cluster in the distal exons, and the likelihood that a variant is pathogenic can be captured by the proportion spliced-in (PSI) metric. More than 55% of heart failure patients with TTN-truncating variants with high PSI scores had ischemic heart disease as their primary etiology, suggesting that even though TTN variants are only known to cause nonischemic cardiomyopathies, they are enriched among heart failure patients with ischemic disease, as compared to controls.
The team also noted that the TET2 gene reached significance in a protein truncation variant model among the subgroup with heart failure with reduced ejection fraction from the CORONA trial. In a diagnostic analysis of 41 known cardiomyopathy genes, they uncovered 204 diagnostic variants in 201 of 5,916 heart failure patients. Large portions (61.3%) of the diagnostic variants were TTN-truncating variants. Among people with ischemic heart disease, they uncovered diagnostic variants in a number of dilated cardiomyopathy genes like TTN, DSG2, and BAG3.
The authors concluded that an increased burden of diagnostic Mendelian cardiomyopathy variants in a broad group of patients with HF of mostly ischemic etiology compared with controls was observed. This work provides further evidence that Mendelian genetic conditions may represent an important subset of complex late-onset diseases such as HF, irrespective of the clinical presentation. The study was published on December 16, 2020 in the journal JAMA Cardiology.
Related Links:
Columbia University Medical Center
Mendelian genetic conditions may represent an important subset of complex late-onset diseases such as heart failure, irrespective of the clinical presentation. Sequencing studies have identified causal genetic variants for distinct subtypes of heart failure (HF) such as hypertrophic or dilated cardiomyopathy. However, the role of rare, high-impact variants in HF, for which ischemic heart disease is the leading cause, has not been systematically investigated.
Medical scientists at the Columbia University Medical Center (New York, NY, USA) and their international colleagues sequenced the exomes of 5,942 people with heart failure from the Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity (CHARM) and the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA) clinical trials. The mean age (± SD) was 68.9 ± 9.9 years and 4,213 (70.9%) were male. Most of the patients in the CORONA and CHARM trial had heart failure with reduced ejection fraction, though a portion of the CHARM study patients had heart failure with preserved ejection fraction. The studies included 13,156 unrelated controls.
The team reported that in their analysis of all heart failure subtypes, the TTN gene reached study wide significance, with the strongest association in a dominant protein truncation variant model. Protein truncation variants in TTN are a known cause of cardiomyopathy, particularly dilated cardiomyopathy. Most of the cardiomyopathy-associated variants cluster in the distal exons, and the likelihood that a variant is pathogenic can be captured by the proportion spliced-in (PSI) metric. More than 55% of heart failure patients with TTN-truncating variants with high PSI scores had ischemic heart disease as their primary etiology, suggesting that even though TTN variants are only known to cause nonischemic cardiomyopathies, they are enriched among heart failure patients with ischemic disease, as compared to controls.
The team also noted that the TET2 gene reached significance in a protein truncation variant model among the subgroup with heart failure with reduced ejection fraction from the CORONA trial. In a diagnostic analysis of 41 known cardiomyopathy genes, they uncovered 204 diagnostic variants in 201 of 5,916 heart failure patients. Large portions (61.3%) of the diagnostic variants were TTN-truncating variants. Among people with ischemic heart disease, they uncovered diagnostic variants in a number of dilated cardiomyopathy genes like TTN, DSG2, and BAG3.
The authors concluded that an increased burden of diagnostic Mendelian cardiomyopathy variants in a broad group of patients with HF of mostly ischemic etiology compared with controls was observed. This work provides further evidence that Mendelian genetic conditions may represent an important subset of complex late-onset diseases such as HF, irrespective of the clinical presentation. The study was published on December 16, 2020 in the journal JAMA Cardiology.
Related Links:
Columbia University Medical Center
Latest Pathology News
- Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
- AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
- AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
- AI-Based Model Predicts Kidney Cancer Therapy Response
- Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
- World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
- Breakthrough Diagnostic Approach to Significantly Improve TB Detection
- Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD
Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more